- 04 Jun, 2024 2 commits
-
-
townwish4git authored
-
Marçal Comajoan Cara authored
* Update transformer2d.md title For the other classes (e.g., UNet2DModel) the title of the documentation coincides with the name of the class, but that was not the case for Transformer2DModel. * Update model docs titles for consistency with class names
-
- 03 Jun, 2024 2 commits
-
-
Dhruv Nair authored
* update * update * update * update
-
XCL authored
* add hunyuandit doc * update hunyuandit doc * update hunyuandit 2d model * update toctree.yml for hunyuandit
-
- 01 Jun, 2024 2 commits
-
-
XCL authored
* Hunyuan Team: add HunyuanDiT related updates --------- Co-authored-by:
XCLiu <liuxc1996@gmail.com> Co-authored-by:
yiyixuxu <yixu310@gmail.com>
-
Co-authored-by: Jimmy <39@
🇺🇸 .com> Co-authored-by:Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
- 31 May, 2024 3 commits
-
-
Anton Obukhov authored
* rename prs-eth/marigold-lcm-v1-0 into prs-eth/marigold-depth-lcm-v1-0 * update image paths in https://huggingface.co/datasets/huggingface/documentation-images to use main branch * fix relative paths to other diffusers pages * Update docs/source/en/using-diffusers/marigold_usage.md Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-
Sayak Paul authored
* init for patches * finish patched model. * continuous transformer * vectorized transformer2d. * style. * inits. * fix-copies. * introduce DiTTransformer2DModel. * fixes * use REMAPPING as suggested by @DN6 * better logging. * add pixart transformer model. * inits. * caption_channels. * attention masking. * fix use_additional_conditions. * remove print. * debug * flatten * fix: assertion for sigma * handle remapping for modeling_utils * add tests for dit transformer2d * quality * placeholder for pixart tests * pixart tests * add _no_split_modules * add docs. * check * check * check * check * fix tests * fix tests * move Transformer output to modeling_output * move errors better and bring back use_additional_conditions attribute. * add unnecessary things from DiT. * clean up pixart * fix remapping * fix device_map things in pixart2d. * replace Transformer2DModel with appropriate classes in dit, pixart tests * empty * legacy mixin classes./ * use a remapping dict for fetching class names. * change to specifc model types in the pipeline implementations. * move _fetch_remapped_cls_from_config to modeling_loading_utils.py * fix dependency problems. * add deprecation note.
-
Dhruv Nair authored
update
-
- 30 May, 2024 3 commits
-
-
Jonah authored
Fix "input/weight type should be the same" Co-authored-by:YiYi Xu <yixu310@gmail.com>
-
satani99 authored
* Modularized the train_lora_sdxl file * Modularized the train_lora_sdxl file * Modularized the train_lora_sdxl file --------- Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
Genius Patrick authored
-
- 29 May, 2024 10 commits
-
-
Dhruv Nair authored
* update * update --------- Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
Tolga Cangöz authored
* Fix copying mechanism typos * fix copying mecha * Revert, since they are in TODO * Fix copying mechanism
-
Steven Liu authored
* files and formats * fix callout * feedback * code sample * feedback
-
Steven Liu authored
deepfloyd training Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
Tolga Cangöz authored
chore: Simplify `platform_info` assignment
-
satani99 authored
* Modularized the train_lora file * Modularized the train_lora file * Modularized the train_lora file * Modularized the train_lora file * Modularized the train_lora file --------- Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
Sayak Paul authored
* post release v0.28.0 * style
-
Sayak Paul authored
* use IPAdapterPlusImageProjectionBlock in IPAdapterPlusImageProjection * reposition IPAdapterPlusImageProjection * refactor complete? * fix heads param retrieval. * update test dict creation method.
-
Sayak Paul authored
move vqmodel to models.autoencoders.
-
Sayak Paul authored
* remove deprecated blocks. * update the location paths.
-
- 28 May, 2024 9 commits
-
-
Vladimir Mandic authored
* fix negative prompt * fix --------- Co-authored-by:
yiyixuxu <yixu310@gmail,com> Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
Steven Liu authored
* first draft * edits
-
Steven Liu authored
* noise schedule * sigmas and zero snr * feedback * feedback
-
Álvaro Somoza authored
fix
-
Sajad Norouzi authored
add kohya high resolution fix.
-
Sayak Paul authored
* change to yiyi's address. * update to diffusers@huggingface.co
-
Sayak Paul authored
* attempt at fixing onetrainer lora. * fix
-
Jiwook Han authored
fix typo in philosophy.md
-
Álvaro Somoza authored
* initial doc * fix wrong LCM sentence * implement binary colormap without requiring matplotlib update section about Marigold for ControlNet update formatting of marigold_usage.md * fix indentation --------- Co-authored-by:anton <anton.obukhov@gmail.com>
-
- 27 May, 2024 5 commits
-
-
Sayak Paul authored
-
Anton Obukhov authored
* implement marigold depth and normals pipelines in diffusers core * remove bibtex * remove deprecations * remove save_memory argument * remove validate_vae * remove config output * remove batch_size autodetection * remove presets logic move default denoising_steps and processing_resolution into the model config make default ensemble_size 1 * remove no_grad * add fp16 to the example usage * implement is_matplotlib_available use is_matplotlib_available, is_scipy_available for conditional imports in the marigold depth pipeline * move colormap, visualize_depth, and visualize_normals into export_utils.py * make the denoising loop more lucid fix the outputs to always be 4d tensors or lists of pil images support a 4d input_image case attempt to support model_cpu_offload_seq move check_inputs into a separate function change default batch_size to 1, remove any logic to make it bigger implicitly * style * rename denoising_steps into num_inference_steps * rename input_image into image * rename input_latent into latents * remove decode_image change decode_prediction to use the AutoencoderKL.decode method * move clean_latent outside of progress_bar * refactor marigold-reusable image processing bits into MarigoldImageProcessor class * clean up the usage example docstring * make ensemble functions members of the pipelines * add early checks in check_inputs rename E into ensemble_size in depth ensembling * fix vae_scale_factor computation * better compatibility with torch.compile better variable naming * move export_depth_to_png to export_utils * remove encode_prediction * improve visualize_depth and visualize_normals to accept multi-dimensional data and lists remove visualization functions from the pipelines move exporting depth as 16-bit PNGs functionality from the depth pipeline update example docstrings * do not shortcut vae.config variables * change all asserts to raise ValueError * rename output_prediction_type to output_type * better variable names clean up variable deletion code * better variable names * pass desc and leave kwargs into the diffusers progress_bar implement nested progress bar for images and steps loops * implement scale_invariant and shift_invariant flags in the ensemble_depth function add scale_invariant and shift_invariant flags readout from the model config further refactor ensemble_depth support ensembling without alignment add ensemble_depth docstring * fix generator device placement checks * move encode_empty_text body into the pipeline call * minor empty text encoding simplifications * adjust pipelines' class docstrings to explain the added construction arguments * improve the scipy failure condition add comments improve docstrings change the default use_full_z_range to True * make input image values range check configurable in the preprocessor refactor load_image_canonical in preprocessor to reject unknown types and return the image in the expected 4D format of tensor and on right device support a list of everything as inputs to the pipeline, change type to PipelineImageInput implement a check that all input list elements have the same dimensions improve docstrings of pipeline outputs remove check_input pipeline argument * remove forgotten print * add prediction_type model config * add uncertainty visualization into export utils fix NaN values in normals uncertainties * change default of output_uncertainty to False better handle the case of an attempt to export or visualize none * fix `output_uncertainty=False` * remove kwargs fix check_inputs according to the new inputs of the pipeline * rename prepare_latent into prepare_latents as in other pipelines annotate prepare_latents in normals pipeline with "Copied from" annotate encode_image in normals pipeline with "Copied from" * move nested-capable `progress_bar` method into the pipelines revert the original `progress_bar` method in pipeline_utils * minor message improvement * fix cpu offloading * move colormap, visualize_depth, export_depth_to_16bit_png, visualize_normals, visualize_uncertainty to marigold_image_processing.py update example docstrings * fix missing comma * change torch.FloatTensor to torch.Tensor * fix importing of MarigoldImageProcessor * fix vae offloading fix batched image encoding remove separate encode_image function and use vae.encode instead * implement marigold's intial tests relax generator checks in line with other pipelines implement return_dict __call__ argument in line with other pipelines * fix num_images computation * remove MarigoldImageProcessor and outputs from import structure update tests * update docstrings * update init * update * style * fix * fix * up * up * up * add simple test * up * update expected np input/output to be channel last * move expand_tensor_or_array into the MarigoldImageProcessor * rewrite tests to follow conventions - hardcoded slices instead of image artifacts write more smoke tests * add basic docs. * add anton's contribution statement * remove todos. * fix assertion values for marigold depth slow tests * fix assertion values for depth normals. * remove print * support AutoencoderTiny in the pipelines * update documentation page add Available Pipelines section add Available Checkpoints section add warning about num_inference_steps * fix missing import in docstring fix wrong value in visualize_depth docstring * [doc] add marigold to pipelines overview * [doc] add section "usage examples" * fix an issue with latents check in the pipelines * add "Frame-by-frame Video Processing with Consistency" section * grammarly * replace tables with images with css-styled images (blindly) * style * print * fix the assertions. * take from the github runner. * take the slices from action artifacts * style. * update with the slices from the runner. * remove unnecessary code blocks. * Revert "[doc] add marigold to pipelines overview" This reverts commit a505165150afd8dab23c474d1a054ea505a56a5f. * remove invitation for new modalities * split out marigold usage examples * doc cleanup --------- Co-authored-by:
yiyixuxu <yixu310@gmail.com> Co-authored-by:
yiyixuxu <yixu310@gmail,com> Co-authored-by:
sayakpaul <spsayakpaul@gmail.com>
-
Dhruv Nair authored
update
-
Sayak Paul authored
* add a more secure way to run tests from a PR. * make pytest more secure. * address dhruv's comments. * improve validation check. * Update .github/workflows/run_tests_from_a_pr.yml Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com> --------- Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com>
-
Dhaivat Bhatt authored
* Add details about 1-stage implementation * Add details about 1-stage implementation
-
- 24 May, 2024 4 commits
-
-
Tolga Cangöz authored
* Fix typos * Fix `pipe.enable_model_cpu_offload()` usage * Fix cpu offloading * Update numbers
-
Tolga Cangöz authored
Fix grammatical error
-
Yue Wu authored
sampling bug fix in basic_training.md In the diffusers basic training tutorial, setting the manual seed argument (generator=torch.manual_seed(config.seed)) in the pipeline call inside evaluate() function rewinds the dataloader shuffling, leading to overfitting due to the model seeing same sequence of training examples after every evaluation call. Using generator=torch.Generator(device='cpu').manual_seed(config.seed) avoids this.
-
Dhruv Nair authored
* update * update
-