1. 04 Sep, 2023 1 commit
    • dg845's avatar
      Add dropout parameter to UNet2DModel/UNet2DConditionModel (#4882) · 55e17907
      dg845 authored
      * Add dropout param to get_down_block/get_up_block and UNet2DModel/UNet2DConditionModel.
      
      * Add dropout param to Versatile Diffusion modeling, which has a copy of UNet2DConditionModel and its own get_down_block/get_up_block functions.
      55e17907
  2. 05 Jul, 2023 1 commit
    • dg845's avatar
      Add Consistency Models Pipeline (#3492) · aed7499a
      dg845 authored
      
      
      * initial commit
      
      * Improve consistency models sampling implementation.
      
      * Add CMStochasticIterativeScheduler, which implements the multi-step sampler (stochastic_iterative_sampler) in the original code, and make further improvements to sampling.
      
      * Add Unet blocks for consistency models
      
      * Add conversion script for Unet
      
      * Fix bug in new unet blocks
      
      * Fix attention weight loading
      
      * Make design improvements to ConsistencyModelPipeline and CMStochasticIterativeScheduler and add initial version of tests.
      
      * make style
      
      * Make small random test UNet class conditional and set resnet_time_scale_shift to 'scale_shift' to better match consistency model checkpoints.
      
      * Add support for converting a test UNet and non-class-conditional UNets to the consistency models conversion script.
      
      * make style
      
      * Change num_class_embeds to 1000 to better match the original consistency models implementation.
      
      * Add support for distillation in pipeline_consistency_models.py.
      
      * Improve consistency model tests:
      	- Get small testing checkpoints from hub
      	- Modify tests to take into account "distillation" parameter of ConsistencyModelPipeline
      	- Add onestep, multistep tests for distillation and distillation + class conditional
      	- Add expected image slices for onestep tests
      
      * make style
      
      * Improve ConsistencyModelPipeline:
      	- Add initial support for class-conditional generation
      	- Fix initial sigma for onestep generation
      	- Fix some sigma shape issues
      
      * make style
      
      * Improve ConsistencyModelPipeline:
      	- add latents __call__ argument and prepare_latents method
      	- add check_inputs method
      	- add initial docstrings for ConsistencyModelPipeline.__call__
      
      * make style
      
      * Fix bug when randomly generating class labels for class-conditional generation.
      
      * Switch CMStochasticIterativeScheduler to configuring a sigma schedule and make related changes to the pipeline and tests.
      
      * Remove some unused code and make style.
      
      * Fix small bug in CMStochasticIterativeScheduler.
      
      * Add expected slices for multistep sampling tests and make them pass.
      
      * Work on consistency model fast tests:
      	- in pipeline, call self.scheduler.scale_model_input before denoising
      	- get expected slices for Euler and Heun scheduler tests
      	- make Euler test pass
      	- mark Heun test as expected fail because it doesn't support prediction_type "sample" yet
      	- remove DPM and Euler Ancestral tests because they don't support use_karras_sigmas
      
      * make style
      
      * Refactor conversion script to make it easier to add more model architectures to convert in the future.
      
      * Work on ConsistencyModelPipeline tests:
      	- Fix device bug when handling class labels in ConsistencyModelPipeline.__call__
      	- Add slow tests for onestep and multistep sampling and make them pass
      	- Refactor fast tests
      	- Refactor ConsistencyModelPipeline.__init__
      
      * make style
      
      * Remove the add_noise and add_noise_to_input methods from CMStochasticIterativeScheduler for now.
      
      * Run python utils/check_copies.py --fix_and_overwrite
      python utils/check_dummies.py --fix_and_overwrite to make dummy objects for new pipeline and scheduler.
      
      * Make fast tests from PipelineTesterMixin pass.
      
      * make style
      
      * Refactor consistency models pipeline and scheduler:
      	- Remove support for Karras schedulers (only support CMStochasticIterativeScheduler)
      	- Move sigma manipulation, input scaling, denoising from pipeline to scheduler
      	- Make corresponding changes to tests and ensure they pass
      
      * make style
      
      * Add docstrings and further refactor pipeline and scheduler.
      
      * make style
      
      * Add initial version of the consistency models documentation.
      
      * Refactor custom timesteps logic following DDPMScheduler/IFPipeline and temporarily add torch 2.0 SDPA kernel selection logic for debugging.
      
      * make style
      
      * Convert current slow tests to use fp16 and flash attention.
      
      * make style
      
      * Add slow tests for normal attention on cuda device.
      
      * make style
      
      * Fix attention weights loading
      
      * Update consistency model fast tests for new test checkpoints with attention fix.
      
      * make style
      
      * apply suggestions
      
      * Add add_noise method to CMStochasticIterativeScheduler (copied from EulerDiscreteScheduler).
      
      * Conversion script now outputs pipeline instead of UNet and add support for LSUN-256 models and different schedulers.
      
      * When both timesteps and num_inference_steps are supplied, raise warning instead of error (timesteps take precedence).
      
      * make style
      
      * Add remaining diffusers model checkpoints for models in the original consistency model release and update usage example.
      
      * apply suggestions from review
      
      * make style
      
      * fix attention naming
      
      * Add tests for CMStochasticIterativeScheduler.
      
      * make style
      
      * Make CMStochasticIterativeScheduler tests pass.
      
      * make style
      
      * Override test_step_shape in CMStochasticIterativeSchedulerTest instead of modifying it in SchedulerCommonTest.
      
      * make style
      
      * rename some models
      
      * Improve API
      
      * rename some models
      
      * Remove duplicated block
      
      * Add docstring and make torch compile work
      
      * More fixes
      
      * Fixes
      
      * Apply suggestions from code review
      
      * Apply suggestions from code review
      
      * add more docstring
      
      * update consistency conversion script
      
      ---------
      Co-authored-by: default avatarayushmangal <ayushmangal@microsoft.com>
      Co-authored-by: default avatarAyush Mangal <43698245+ayushtues@users.noreply.github.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      aed7499a
  3. 30 Jun, 2023 1 commit
    • Steven Liu's avatar
      [docs] Model API (#3562) · 174dcd69
      Steven Liu authored
      * add modelmixin and unets
      
      * remove old model page
      
      * minor fixes
      
      * fix unet2dcondition
      
      * add vqmodel and autoencoderkl
      
      * add rest of models
      
      * fix autoencoderkl path
      
      * fix toctree
      
      * fix toctree again
      
      * apply feedback
      
      * apply feedback
      
      * fix copies
      
      * fix controlnet copy
      
      * fix copies
      174dcd69
  4. 22 Jun, 2023 1 commit
    • Patrick von Platen's avatar
      Correct bad attn naming (#3797) · 88d26946
      Patrick von Platen authored
      
      
      * relax tolerance slightly
      
      * correct incorrect naming
      
      * correct namingc
      
      * correct more
      
      * Apply suggestions from code review
      
      * Fix more
      
      * Correct more
      
      * correct incorrect naming
      
      * Update src/diffusers/models/controlnet.py
      
      * Correct flax
      
      * Correct renaming
      
      * Correct blocks
      
      * Fix more
      
      * Correct more
      
      * mkae style
      
      * mkae style
      
      * mkae style
      
      * mkae style
      
      * mkae style
      
      * Fix flax
      
      * mkae style
      
      * rename
      
      * rename
      
      * rename attn head dim to attention_head_dim
      
      * correct flax
      
      * make style
      
      * improve
      
      * Correct more
      
      * make style
      
      * fix more
      
      * mkae style
      
      * Update src/diffusers/models/controlnet_flax.py
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      ---------
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      88d26946
  5. 17 Apr, 2023 1 commit
  6. 11 Apr, 2023 2 commits
    • George Ogden's avatar
      Update documentation (#2996) · cb63febf
      George Ogden authored
      * Update documentation
      
      Based on sampling, the width and height must be powers of 2 as the samples halve in size each time
      
      * make style
      cb63febf
    • Patrick von Platen's avatar
      Fix config prints and save, load of pipelines (#2849) · 8b451eb6
      Patrick von Platen authored
      * [Config] Fix config prints and save, load
      
      * Only use potential nn.Modules for dtype and device
      
      * Correct vae image processor
      
      * make sure in_channels is not accessed directly
      
      * make sure in channels is only accessed via config
      
      * Make sure schedulers only access config attributes
      
      * Make sure to access config in SAG
      
      * Fix vae processor and make style
      
      * add tests
      
      * uP
      
      * make style
      
      * Fix more naming issues
      
      * Final fix with vae config
      
      * change more
      8b451eb6
  7. 07 Mar, 2023 1 commit
  8. 01 Mar, 2023 1 commit
  9. 14 Feb, 2023 1 commit
  10. 26 Jan, 2023 1 commit
    • Pedro Cuenca's avatar
      Allow `UNet2DModel` to use arbitrary class embeddings (#2080) · 915a5636
      Pedro Cuenca authored
      * Allow `UNet2DModel` to use arbitrary class embeddings.
      
      We can currently use class conditioning in `UNet2DConditionModel`, but
      not in `UNet2DModel`. However, `UNet2DConditionModel` requires text
      conditioning too, which is unrelated to other types of conditioning.
      This commit makes it possible for `UNet2DModel` to be conditioned on
      entities other than timesteps. This is useful for training /
      research purposes. We can currently train models to perform
      unconditional image generation or text-to-image generation, but it's not
      straightforward to train a model to perform class-conditioned image
      generation, if text conditioning is not required.
      
      We could potentiall use `UNet2DConditionModel` for class-conditioning
      without text embeddings by using down/up blocks without
      cross-conditioning. However:
      - The mid block currently requires cross attention.
      - We are required to provide `encoder_hidden_states` to `forward`.
      
      * Style
      
      * Align class conditioning, add docstring for `num_class_embeds`.
      
      * Copy docstring to versatile_diffusion UNetFlatConditionModel
      915a5636
  11. 30 Dec, 2022 1 commit
  12. 18 Dec, 2022 1 commit
    • Will Berman's avatar
      kakaobrain unCLIP (#1428) · 2dcf64b7
      Will Berman authored
      
      
      * [wip] attention block updates
      
      * [wip] unCLIP unet decoder and super res
      
      * [wip] unCLIP prior transformer
      
      * [wip] scheduler changes
      
      * [wip] text proj utility class
      
      * [wip] UnCLIPPipeline
      
      * [wip] kakaobrain unCLIP convert script
      
      * [unCLIP pipeline] fixes re: @patrickvonplaten
      
      remove callbacks
      
      move denoising loops into call function
      
      * UNCLIPScheduler re: @patrickvonplaten
      
      Revert changes to DDPMScheduler. Make UNCLIPScheduler, a modified
      DDPM scheduler with changes to support karlo
      
      * mask -> attention_mask re: @patrickvonplaten
      
      * [DDPMScheduler] remove leftover change
      
      * [docs] PriorTransformer
      
      * [docs] UNet2DConditionModel and UNet2DModel
      
      * [nit] UNCLIPScheduler -> UnCLIPScheduler
      
      matches existing unclip naming better
      
      * [docs] SchedulingUnCLIP
      
      * [docs] UnCLIPTextProjModel
      
      * refactor
      
      * finish licenses
      
      * rename all to attention_mask and prep in models
      
      * more renaming
      
      * don't expose unused configs
      
      * final renaming fixes
      
      * remove x attn mask when not necessary
      
      * configure kakao script to use new class embedding config
      
      * fix copies
      
      * [tests] UnCLIPScheduler
      
      * finish x attn
      
      * finish
      
      * remove more
      
      * rename condition blocks
      
      * clean more
      
      * Apply suggestions from code review
      
      * up
      
      * fix
      
      * [tests] UnCLIPPipelineFastTests
      
      * remove unused imports
      
      * [tests] UnCLIPPipelineIntegrationTests
      
      * correct
      
      * make style
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      2dcf64b7
  13. 23 Nov, 2022 3 commits
  14. 14 Nov, 2022 1 commit
  15. 25 Oct, 2022 1 commit
  16. 12 Oct, 2022 1 commit
  17. 04 Oct, 2022 1 commit
  18. 15 Sep, 2022 1 commit
  19. 08 Sep, 2022 1 commit
  20. 05 Sep, 2022 1 commit
  21. 03 Sep, 2022 1 commit
  22. 02 Sep, 2022 1 commit
    • Pedro Cuenca's avatar
      Use ONNX / Core ML compatible method to broadcast (#310) · e49dd03d
      Pedro Cuenca authored
      * Use ONNX / Core ML compatible method to broadcast.
      
      Unfortunately `tile` could not be used either, it's still not compatible
      with ONNX.
      
      See #284.
      
      * Add comment about why broadcast_to is not used.
      
      Also, apply style to changed files.
      
      * Make sure broadcast remains in same device.
      e49dd03d
  23. 16 Aug, 2022 1 commit
  24. 20 Jul, 2022 1 commit
    • Patrick von Platen's avatar
      Big Model Renaming (#109) · 9c3820d0
      Patrick von Platen authored
      * up
      
      * change model name
      
      * renaming
      
      * more changes
      
      * up
      
      * up
      
      * up
      
      * save checkpoint
      
      * finish api / naming
      
      * finish config renaming
      
      * rename all weights
      
      * finish really
      9c3820d0