"vscode:/vscode.git/clone" did not exist on "193d6300bfa40be659155a50f4f6e226ef6a9553"
- 13 Mar, 2024 1 commit
-
-
Sayak Paul authored
* fix PyTorch classes and start deprecsation cycles. * remove args crafting for accommodating scale. * remove scale check in feedforward. * assert against nn.Linear and not CompatibleLinear. * remove conv_cls and lineaR_cls. * remove scale *
👋 scale. * fix: unet2dcondition * fix attention.py * fix: attention.py again * fix: unet_2d_blocks. * fix-copies. * more fixes. * fix: resnet.py * more fixes * fix i2vgenxl unet. * depcrecate scale gently. * fix-copies * Apply suggestions from code review Co-authored-by:YiYi Xu <yixu310@gmail.com> * quality * throw warning when scale is passed to the the BasicTransformerBlock class. * remove scale from signature. * cross_attention_kwargs, very nice catch by Yiyi * fix: logger.warn * make deprecation message clearer. * address final comments. * maintain same depcrecation message and also add it to activations. * address yiyi * fix copies * Apply suggestions from code review Co-authored-by:
YiYi Xu <yixu310@gmail.com> * more depcrecation * fix-copies --------- Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
- 08 Feb, 2024 1 commit
-
-
Sayak Paul authored
change to 2024
-
- 31 Jan, 2024 1 commit
-
-
YiYi Xu authored
--------- Co-authored-by:
yiyixuxu <yixu310@gmail,com> Co-authored-by:
Alvaro Somoza <somoza.alvaro@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 28 Dec, 2023 1 commit
-
-
YiYi Xu authored
* refactor ip-adapter-imageproj, gligen --------- Co-authored-by:yiyixuxu <yixu310@gmail,com>
-
- 21 Dec, 2023 1 commit
-
-
Will Berman authored
amused rename Update docs/source/en/api/pipelines/amused.md Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> AdaLayerNormContinuous default values custom micro conditioning micro conditioning docs put lookup from codebook in constructor fix conversion script remove manual fused flash attn kernel add training script temp remove training script add dummy gradient checkpointing func clarify temperatures is an instance variable by setting it remove additional SkipFF block args hardcode norm args rename tests folder fix paths and samples fix tests add training script training readme lora saving and loading non-lora saving/loading some readme fixes guards Update docs/source/en/api/pipelines/amused.md Co-authored-by:
Suraj Patil <surajp815@gmail.com> Update examples/amused/README.md Co-authored-by:
Suraj Patil <surajp815@gmail.com> Update examples/amused/train_amused.py Co-authored-by:
Suraj Patil <surajp815@gmail.com> vae upcasting add fp16 integration tests use tuple for micro cond copyrights remove casts delegate to torch.nn.LayerNorm move temperature to pipeline call upsampling/downsampling changes
-
- 19 Dec, 2023 1 commit
-
-
YiYi Xu authored
pixart-alpha Co-authored-by:yiyixuxu <yixu310@gmail,com>
-
- 07 Dec, 2023 1 commit
-
-
Fabio Rigano authored
* Add support for IPAdapterFull Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> --------- Co-authored-by:
YiYi Xu <yixu310@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 04 Dec, 2023 1 commit
-
-
takuoko authored
* Support IP-Adapter Plus * fix format * restore before black format * restore before black format * generic * Refactor PerceiverAttention * format * fix test and refactor PerceiverAttention * generic encode_image * keep attention implementation * merge tests * encode_image backward compatible * code quality * fix controlnet inpaint pipeline * refactor FFN * refactor FFN --------- Co-authored-by:YiYi Xu <yixu310@gmail.com>
-
- 06 Nov, 2023 1 commit
-
-
Sayak Paul authored
* init pixart alpha pipeline * fix: import * script * script * script * add: vae to the pipeline * add: vae_scale_factor * add: checkpoint_path * clean conversion script a bit. * size embeddings. * fix: size embedding * update scrip * support for interpolation of position embedding. * support for conditioning. * .. * .. * .. * final layer * final layer * align if encode_prompt * support for caption embedding * refactor * refactor * refactor * start cross attention * start cross attention * cross_attention_dim * cross * cross * support for resolution and aspect_ratio * support for caption projection * refactor patch embeddings * batch_size * up * commit * commit * commit. * squeeze * squeeze * squeeze * squeeze * squeeze * squeeze * squeeze * squeeze * squeeze * squeeze * squeeze * squeeze. * squeeze. * fix final block./ * fix final block./ * fix final block./ * clean * fix: interpolation scale. * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging' * debugging * debugging * debugging * debugging * debugging * debugging * debugging * make --checkpoint_path non-required. * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * remove num_tokens * timesteps -> timestep * timesteps -> timestep * timesteps -> timestep * timesteps -> timestep * timesteps -> timestep * timesteps -> timestep * debug * debug * update conversion script. * update conversion script. * update conversion script. * debug * debug * debug * clean * debug * debug * debug * debug * debug * debug * debug * debug * deug * debug * debug * debug * fix * fix * fix * fix * fix * fix * fix * fix * fix * fix * fix * fix * fix * clean * fix * fix * boom * boom * some changes * boom * save * up * remove i * fix more tests * DPMSolverMultistepScheduler * fix * offloading * fix conversion script * fix conversion script * remove print * remove support for negative prompt embeds. * typo. * remove extra kwargs * bring conversion script to where it was * fix * trying mu luck * trying my luck again * again * again * again * clean up * up * up * update example * support for 512 * remove spacing * finalize docs. * test debug * fix: assertion values. * debug * debug * debug * fix: repeat * remove prints. * Apply suggestions from code review * Apply suggestions from code review * Correct more * Apply suggestions from code review * Change all * Clean more * fix more * Fix more * Fix more * Correct more * address patrick's comments. * remove unneeded args * clean up pipeline. * sty;e * make the use of additional conditions better conditioned. * None better * dtype * height and width validation * add a note about size brackets. * fix * spit out slow test outputs. * fix? * fix optional test * fix more * remove unneeded comment * debug --------- Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 02 Nov, 2023 1 commit
-
-
Dhruv Nair authored
* draft design * clean up * clean up * clean up * clean up * clean up * clean up * clean up * clean up * clean up * update pipeline * clean up * clean up * clean up * add tests * change motion block * clean up * clean up * clean up * update * update * update * update * update * update * update * update * clean up * update * update * update model test * update * update * update * update * make style * update * fix embeddings * update * merge upstream * max fix copies * fix bug * fix mistake * add docs * update * clean up * update * clean up * clean up * fix docstrings * fix docstrings * update * update * clean up * update
-
- 13 Oct, 2023 1 commit
-
-
Younes Belkada authored
* v1 * add tests and fix previous failing tests * fix CI * add tests + v1 `PeftLayerScaler` * style * add scale retrieving mechanism system * fix CI * up * up * simple approach --> not same results for some reason * fix issues * fix copies * remove unneeded method * active adapters! * fix merge conflicts * up * up * kohya - test-1 * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix scale * fix copies * add comment * multi adapters * fix tests * oops * v1 faster loading - in progress * Revert "v1 faster loading - in progress" This reverts commit ac925f81321e95fc8168184c3346bf3d75404d5a. * kohya same generation * fix some slow tests * peft integration features for unet lora 1. Support for Multiple ranks/alphas 2. Support for Multiple active adapters 3. Support for enabling/disabling LoRAs * fix `get_peft_kwargs` * Update loaders.py * add some tests * add unfuse tests * fix tests * up * add set adapter from sourab and tests * fix multi adapter tests * style & quality * style * remove comment * fix `adapter_name` issues * fix unet adapter name for sdxl * fix enabling/disabling adapters * fix fuse / unfuse unet * nit * fix * up * fix cpu offloading * fix another slow test * fix another offload test * add more tests * all slow tests pass * style * fix alpha pattern for unet and text encoder * Update src/diffusers/loaders.py Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * Update src/diffusers/models/attention.py Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * up * up * clarify comment * comments * change comment order * change comment order * stylr & quality * Update tests/lora/test_lora_layers_peft.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix bugs and add tests * Update src/diffusers/models/modeling_utils.py Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * Update src/diffusers/models/modeling_utils.py Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * refactor * suggestion * add break statemebt * add compile tests * move slow tests to peft tests as I modified them * quality * refactor a bit * style * change import * style * fix CI * refactor slow tests one last time * style * oops * oops * oops * final tweak tests * Apply suggestions from code review Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Update src/diffusers/loaders.py Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * comments * Apply suggestions from code review Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * remove comments * more comments * try * revert * add `safe_merge` tests * add comment * style, comments and run tests in fp16 * add warnings * fix doc test * replace with `adapter_weights` * add `get_active_adapters()` * expose `get_list_adapters` method * better error message * Apply suggestions from code review Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> * style * trigger slow lora tests * fix tests * maybe fix last test * revert * Update src/diffusers/loaders.py Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * Update src/diffusers/loaders.py Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * Update src/diffusers/loaders.py Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * Update src/diffusers/loaders.py Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * move `MIN_PEFT_VERSION` * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * let's not use class variable * fix few nits * change a bit offloading logic * check earlier * rm unneeded block * break long line * return empty list * change logic a bit and address comments * add typehint * remove parenthesis * fix * revert to fp16 in tests * add to gpu * revert to old test * style * Update src/diffusers/loaders.py Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * change indent * Apply suggestions from code review * Apply suggestions from code review --------- Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com> Co-authored-by:
Benjamin Bossan <BenjaminBossan@users.noreply.github.com> Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-
- 20 Sep, 2023 1 commit
-
-
Sayak Paul authored
* better condition. * debugging * how about now? * how about now? * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * debugging * support for lycoris. * style * add: lycoris test * fix from_pretrained call. * fix assertion values.
-
- 01 Sep, 2023 1 commit
-
-
Nguyễn Công Tú Anh authored
* Add GLIGEN Text Image implementation * add style transfer from image * fix check_repository_consistency * add convert script GLIGEN model to Diffusers * rename attention type * fix style code * remove PositionNetTextImage * Revert "fix check_repository_consistency" This reverts commit 15f098c96e00bb9e67b831161615b30a2d28d815. * change attention type name * update docs for GLIGEN * change examples with hf-document-image * fix style * add CLIPImageProjection for GLIGEN * Add new encode_prompt, load project matrix in pipe init * move CLIPImageProjection to stable_diffusion * add comment
-
- 16 Aug, 2023 1 commit
-
-
nikhil-masterful authored
* Add GLIGEN implementation * GLIGEN: Fix code quality check failures * GLIGEN: Fix Import block un-sorted or un-formatted failures * GLIGEN: Fix check_repository_consistency failures * GLIGEN: Add 'PositionNet' to versatile_diffusion/modeling_text_unet.py * GLIGEN: check_repository_consistency: fix 'copy does not match' error * GLIGEN: Fix review comments (1) * GLIGEN: Fix E721 Do not compare types, use `isinstance()` failures * GLIGEN : Ensure _encode_prompt() copy matches to StableDiffusionPipeline * GLIGEN: Fix ruff E721 failure in unidiffuser/test_unidiffuser.py * GLIGEN: doc_builder: restyle pipeline_stable_diffusion_gligen.py * GIGLEN: reset files unrelated to gligen * GLIGEN: Fix documentation comments (1) * GLIGEN: Fix review comments (2) * GLIGEN: Added FastTest * GLIGEN: Fix review comments (3)
-
- 06 Jul, 2023 1 commit
-
-
YiYi Xu authored
* Kandinsky2_2 * fix init kandinsky2_2 * kandinsky2_2 fix inpainting * rename pipelines: remove decoder + 2_2 -> V22 * Update scheduling_unclip.py * remove text_encoder and tokenizer arguments from doc string * add test for text2img * add tests for text2img & img2img * fix * add test for inpaint * add prior tests * style * copies * add controlnet test * style * add a test for controlnet_img2img * update prior_emb2emb api to accept image_embedding or image * add a test for prior_emb2emb * style * remove try except * example * fix * add doc string examples to all kandinsky pipelines * style * update doc * style * add a top about 2.2 * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * vae -> movq * vae -> movq * style * fix the #copied from * remove decoder from file name * update doc: add a section for kandinsky 2.2 * fix * fix-copies * add coped from * add copies from for prior * add copies from for prior emb2emb * copy from for img2img * copied from for inpaint * more copied from * more copies from * more copies * remove the yiyi comments * Apply suggestions from code review * Self-contained example, pipeline order * Import prior output instead of redefining. * Style * Make VQModel compatible with model offload. * Fix copies --------- Co-authored-by:
Shahmatov Arseniy <62886550+cene555@users.noreply.github.com> Co-authored-by:
yiyixuxu <yixu310@gmail,com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 05 Jun, 2023 1 commit
-
-
Will Berman authored
* move activation dispatches into helper function * tests
-
- 25 May, 2023 1 commit
-
-
YiYi Xu authored
add kandinsky2.1 --------- Co-authored-by:
yiyixuxu <yixu310@gmail,com> Co-authored-by:
Ayush Mangal <43698245+ayushtues@users.noreply.github.com> Co-authored-by:
ayushmangal <ayushmangal@microsoft.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com>
-
- 22 May, 2023 1 commit
-
-
Birch-san authored
* Cross-attention masks prefer qualified symbol, fix accidental Optional prefer qualified symbol in AttentionProcessor prefer qualified symbol in embeddings.py qualified symbol in transformed_2d qualify FloatTensor in unet_2d_blocks move new transformer_2d params attention_mask, encoder_attention_mask to the end of the section which is assumed (e.g. by functions such as checkpoint()) to have a stable positional param interface. regard return_dict as a special-case which is assumed to be injected separately from positional params (e.g. by create_custom_forward()). move new encoder_attention_mask param to end of CrossAttn block interfaces and Unet2DCondition interface, to maintain positional param interface. regenerate modeling_text_unet.py remove unused import unet_2d_condition encoder_attention_mask docs Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> versatile_diffusion/modeling_text_unet.py encoder_attention_mask docs Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> transformer_2d encoder_attention_mask docs Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> unet_2d_blocks.py: add parameter name comments Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> revert description. bool-to-bias treatment happens in unet_2d_condition only. comment parameter names fix copies, style * encoder_attention_mask for SimpleCrossAttnDownBlock2D, SimpleCrossAttnUpBlock2D * encoder_attention_mask for UNetMidBlock2DSimpleCrossAttn * support attention_mask, encoder_attention_mask in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D, KAttentionBlock. fix binding of attention_mask, cross_attention_kwargs params in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D checkpoint invocations. * fix mistake made during merge conflict resolution * regenerate versatile_diffusion * pass time embedding into checkpointed attention invocation * always assume encoder_attention_mask is a mask (i.e. not a bias). * style, fix-copies * add tests for cross-attention masks * add test for padding of attention mask * explain mask's query_tokens dim. fix explanation about broadcasting over channels; we actually broadcast over query tokens * support both masks and biases in Transformer2DModel#forward. document behaviour * fix-copies * delete attention_mask docs on the basis I never tested self-attention masking myself. not comfortable explaining it, since I don't actually understand how a self-attn mask can work in its current form: the key length will be different in every ResBlock (we don't downsample the mask when we downsample the image). * review feedback: the standard Unet blocks shouldn't pass temb to attn (only to resnet). remove from KCrossAttnDownBlock2D,KCrossAttnUpBlock2D#forward. * remove encoder_attention_mask param from SimpleCrossAttn{Up,Down}Block2D,UNetMidBlock2DSimpleCrossAttn, and mask-choice in those blocks' #forward, on the basis that they only do one type of attention, so the consumer can pass whichever type of attention_mask is appropriate. * put attention mask padding back to how it was (since the SD use-case it enabled wasn't important, and it breaks the original unclip use-case). disable the test which was added. * fix-copies * style * fix-copies * put encoder_attention_mask param back into Simple block forward interfaces, to ensure consistency of forward interface. * restore passing of emb to KAttentionBlock#forward, on the basis that removal caused test failures. restore also the passing of emb to checkpointed calls to KAttentionBlock#forward. * make simple unet2d blocks use encoder_attention_mask, but only when attention_mask is None. this should fix UnCLIP compatibility. * fix copies
-
- 25 Apr, 2023 1 commit
-
-
Patrick von Platen authored
* add * clean * up * clean up more * fix more tests * Improve docs further * improve * more fixes docs * Improve docs more * Update src/diffusers/models/unet_2d_condition.py * fix * up * update doc links * make fix-copies * add safety checker and watermarker to stage 3 doc page code snippets * speed optimizations docs * memory optimization docs * make style * add watermarking snippets to doc string examples * make style * use pt_to_pil helper functions in doc strings * skip mps tests * Improve safety * make style * new logic * fix * fix bad onnx design * make new stable diffusion upscale pipeline model arguments optional * define has_nsfw_concept when non-pil output type * lowercase linked to notebook name --------- Co-authored-by:William Berman <WLBberman@gmail.com>
-
- 01 Mar, 2023 1 commit
-
-
Patrick von Platen authored
-
- 07 Feb, 2023 1 commit
-
-
YiYi Xu authored
* Modify UNet2DConditionModel - allow skipping mid_block - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size` - allow user to set dimension for the timestep embedding (`time_embed_dim`) - the kernel_size for `conv_in` and `conv_out` is now configurable - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj` - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))` - added 2 arguments `attn1_types` and `attn2_types` * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the `BasicTransformerBlock` block with 2 cross-attention , otherwise we get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention; so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block; note that I stil kept the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks - the position of downsample layer and upsample layer is now configurable - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support this use case - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step inside cross attention block add up/down blocks for k-upscaler modify CrossAttention class - make the `dropout` layer in `to_out` optional - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states - `attention_dropout`: add an optional dropout on attention score adapt BasicTransformerBlock - add an ada groupnorm layer to conditioning attention input with timestep embedding - allow skipping the FeedForward layer in between the attentions - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration update timestep embedding: add new act_fn gelu and an optional act_2 modified ResnetBlock2D - refactored with AdaGroupNorm class (the timestep scale shift normalization) - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv - add option to use input AdaGroupNorm on the input instead of groupnorm - add options to add a dropout layer after each conv - allow user to set the bias in conv_shortcut (needed for k-upscaler) - add gelu adding conversion script for k-upscaler unet add pipeline * fix attention mask * fix a typo * fix a bug * make sure model can be used with GPU * make pipeline work with fp16 * fix an error in BasicTransfomerBlock * make style * fix typo * some more fixes * uP * up * correct more * some clean-up * clean time proj * up * uP * more changes * remove the upcast_attention=True from unet config * remove attn1_types, attn2_types etc * fix * revert incorrect changes up/down samplers * make style * remove outdated files * Apply suggestions from code review * attention refactor * refactor cross attention * Apply suggestions from code review * update * up * update * Apply suggestions from code review * finish * Update src/diffusers/models/cross_attention.py * more fixes * up * up * up * finish * more corrections of conversion state * act_2 -> act_2_fn * remove dropout_after_conv from ResnetBlock2D * make style * simplify KAttentionBlock * add fast test for latent upscaler pipeline * add slow test * slow test fp16 * make style * add doc string for pipeline_stable_diffusion_latent_upscale * add api doc page for latent upscaler pipeline * deprecate attention mask * clean up embeddings * simplify resnet * up * clean up resnet * up * correct more * up * up * improve a bit more * correct more * more clean-ups * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * add docstrings for new unet config * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * # Copied from * encode the image if not latent * remove force casting vae to fp32 * fix * add comments about preconditioning parameters from k-diffusion paper * attn1_type, attn2_type -> add_self_attention * clean up get_down_block and get_up_block * fix * fixed a typo(?) in ada group norm * update slice attention processer for cross attention * update slice * fix fast test * update the checkpoint * finish tests * fix-copies * fix-copy for modeling_text_unet.py * make style * make style * fix f-string * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix import * correct changes * fix resnet * make fix-copies * correct euler scheduler * add missing #copied from for preprocess * revert * fix * fix copies * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/models/cross_attention.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * clean up conversion script * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D * more * Update src/diffusers/models/unet_2d_condition.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * remove prepare_extra_step_kwargs * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix a typo in timestep embedding * remove num_image_per_prompt * fix fasttest * make style + fix-copies * fix * fix xformer test * fix style * doc string * make style * fix-copies * docstring for time_embedding_norm * make style * final finishes * make fix-copies * fix tests --------- Co-authored-by:
yiyixuxu <yixu@yis-macbook-pro.lan> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 17 Jan, 2023 1 commit
-
-
Kashif Rasul authored
* added dit model * import * initial pipeline * initial convert script * initial pipeline * make style * raise valueerror * single function * rename classes * use DDIMScheduler * timesteps embedder * samples to cpu * fix var names * fix numpy type * use timesteps class for proj * fix typo * fix arg name * flip_sin_to_cos and better var names * fix C shape cal * make style * remove unused imports * cleanup * add back patch_size * initial dit doc * typo * Update docs/source/api/pipelines/dit.mdx Co-authored-by:
Suraj Patil <surajp815@gmail.com> * added copyright license headers * added example usage and toc * fix variable names asserts * remove comment * added docs * fix typo * upstream changes * set proper device for drop_ids * added initial dit pipeline test * update docs * fix imports * make fix-copies * isort * fix imports * get rid of more magic numbers * fix code when guidance is off * remove block_kwargs * cleanup script * removed to_2tuple * use FeedForward class instead of another MLP * style * work on mergint DiTBlock with BasicTransformerBlock * added missing final_dropout and args to BasicTransformerBlock * use norm from block * fix arg * remove unused arg * fix call to class_embedder * use timesteps * make style * attn_output gets multiplied * removed commented code * use Transformer2D * use self.is_input_patches * fix flags * fixed conversion to use Transformer2DModel * fixes for pipeline * remove dit.py * fix timesteps device * use randn_tensor and fix fp16 inf. * timesteps_emb already the right dtype * fix dit test class * fix test and style * fix norm2 usage in vq-diffusion * added author names to pipeline and lmagenet labels link * fix tests * use norm_type as string * rename dit to transformer * fix name * fix test * set norm_type = "layer" by default * fix tests * do not skip common tests * Update src/diffusers/models/attention.py Co-authored-by:
Suraj Patil <surajp815@gmail.com> * revert AdaLayerNorm API * fix norm_type name * make sure all components are in eval mode * revert norm2 API * compact * finish deprecation * add slow tests * remove @ * refactor some stuff * upload * Update src/diffusers/pipelines/dit/pipeline_dit.py * finish more * finish docs * improve docs * finish docs Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
William Berman <WLBberman@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 14 Nov, 2022 1 commit
-
-
Nathan Lambert authored
* re-add RL model code * match model forward api * add register_to_config, pass training tests * fix tests, update forward outputs * remove unused code, some comments * add to docs * remove extra embedding code * unify time embedding * remove conv1d output sequential * remove sequential from conv1dblock * style and deleting duplicated code * clean files * remove unused variables * clean variables * add 1d resnet block structure for downsample * rename as unet1d * fix renaming * rename files * add get_block(...) api * unify args for model1d like model2d * minor cleaning * fix docs * improve 1d resnet blocks * fix tests, remove permuts * fix style * add output activation * rename flax blocks file * Add Value Function and corresponding example script to Diffuser implementation (#884) * valuefunction code * start example scripts * missing imports * bug fixes and placeholder example script * add value function scheduler * load value function from hub and get best actions in example * very close to working example * larger batch size for planning * more tests * merge unet1d changes * wandb for debugging, use newer models * success! * turns out we just need more diffusion steps * run on modal * merge and code cleanup * use same api for rl model * fix variance type * wrong normalization function * add tests * style * style and quality * edits based on comments * style and quality * remove unused var * hack unet1d into a value function * add pipeline * fix arg order * add pipeline to core library * community pipeline * fix couple shape bugs * style * Apply suggestions from code review Co-authored-by:
Nathan Lambert <nathan@huggingface.co> * update post merge of scripts * add mdiblock / outblock architecture * Pipeline cleanup (#947) * valuefunction code * start example scripts * missing imports * bug fixes and placeholder example script * add value function scheduler * load value function from hub and get best actions in example * very close to working example * larger batch size for planning * more tests * merge unet1d changes * wandb for debugging, use newer models * success! * turns out we just need more diffusion steps * run on modal * merge and code cleanup * use same api for rl model * fix variance type * wrong normalization function * add tests * style * style and quality * edits based on comments * style and quality * remove unused var * hack unet1d into a value function * add pipeline * fix arg order * add pipeline to core library * community pipeline * fix couple shape bugs * style * Apply suggestions from code review * clean up comments * convert older script to using pipeline and add readme * rename scripts * style, update tests * delete unet rl model file * remove imports in src Co-authored-by:
Nathan Lambert <nathan@huggingface.co> * Update src/diffusers/models/unet_1d_blocks.py * Update tests/test_models_unet.py * RL Cleanup v2 (#965) * valuefunction code * start example scripts * missing imports * bug fixes and placeholder example script * add value function scheduler * load value function from hub and get best actions in example * very close to working example * larger batch size for planning * more tests * merge unet1d changes * wandb for debugging, use newer models * success! * turns out we just need more diffusion steps * run on modal * merge and code cleanup * use same api for rl model * fix variance type * wrong normalization function * add tests * style * style and quality * edits based on comments * style and quality * remove unused var * hack unet1d into a value function * add pipeline * fix arg order * add pipeline to core library * community pipeline * fix couple shape bugs * style * Apply suggestions from code review * clean up comments * convert older script to using pipeline and add readme * rename scripts * style, update tests * delete unet rl model file * remove imports in src * add specific vf block and update tests * style * Update tests/test_models_unet.py Co-authored-by:
Nathan Lambert <nathan@huggingface.co> * fix quality in tests * fix quality style, split test file * fix checks / tests * make timesteps closer to main * unify block API * unify forward api * delete lines in examples * style * examples style * all tests pass * make style * make dance_diff test pass * Refactoring RL PR (#1200) * init file changes * add import utils * finish cleaning files, imports * remove import flags * clean examples * fix imports, tests for merge * update readmes * hotfix for tests * quality * fix some tests * change defaults * more mps test fixes * unet1d defaults * do not default import experimental * defaults for tests * fix tests * fix-copies * fix * changes per Patrik's comments (#1285) * changes per Patrik's comments * update conversion script * fix renaming * skip more mps tests * last test fix * Update examples/rl/README.md Co-authored-by:
Ben Glickenhaus <benglickenhaus@gmail.com>
-
- 03 Nov, 2022 1 commit
-
-
Will Berman authored
* Changes for VQ-diffusion VQVAE Add specify dimension of embeddings to VQModel: `VQModel` will by default set the dimension of embeddings to the number of latent channels. The VQ-diffusion VQVAE has a smaller embedding dimension, 128, than number of latent channels, 256. Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down unet block helpers. VQ-diffusion's VQVAE uses those two block types. * Changes for VQ-diffusion transformer Modify attention.py so SpatialTransformer can be used for VQ-diffusion's transformer. SpatialTransformer: - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous. - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs - modified forward pass to take optional timestep embeddings ImagePositionalEmbeddings: - added to provide positional embeddings to discrete inputs for latent pixels BasicTransformerBlock: - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings - modified forward pass to take optional timestep embeddings CrossAttention: - now may optionally take a bias parameter for its query, key, and value linear layers FeedForward: - Internal layers are now configurable ApproximateGELU: - Activation function in VQ-diffusion's feedforward layer AdaLayerNorm: - Norm layer modified to incorporate timestep embeddings * Add VQ-diffusion scheduler * Add VQ-diffusion pipeline * Add VQ-diffusion convert script to diffusers * Add VQ-diffusion dummy objects * Add VQ-diffusion markdown docs * Add VQ-diffusion tests * some renaming * some fixes * more renaming * correct * fix typo * correct weights * finalize * fix tests * Apply suggestions from code review Co-authored-by:
Anton Lozhkov <aglozhkov@gmail.com> * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * finish * finish * up Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Anton Lozhkov <aglozhkov@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 25 Oct, 2022 1 commit
-
-
Patrick von Platen authored
* start * add more logic * Update src/diffusers/models/unet_2d_condition_flax.py * match weights * up * make model work * making class more general, fixing missed file rename * small fix * make new conversion work * up * finalize conversion * up * first batch of variable renamings * remove c and c_prev var names * add mid and out block structure * add pipeline * up * finish conversion * finish * upload * more fixes * Apply suggestions from code review * add attr * up * uP * up * finish tests * finish * uP * finish * fix test * up * naming consistency in tests * Apply suggestions from code review Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Nathan Lambert <nathan@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co> * remove hardcoded 16 * Remove bogus * fix some stuff * finish * improve logging * docs * upload Co-authored-by:
Nathan Lambert <nol@berkeley.edu> Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Nathan Lambert <nathan@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co>
-
- 30 Sep, 2022 1 commit
-
-
Nouamane Tazi authored
* initial commit * make UNet stream capturable * try to fix noise_pred value * remove cuda graph and keep NB * non blocking unet with PNDMScheduler * make timesteps np arrays for pndm scheduler because lists don't get formatted to tensors in `self.set_format` * make max async in pndm * use channel last format in unet * avoid moving timesteps device in each unet call * avoid memcpy op in `get_timestep_embedding` * add `channels_last` kwarg to `DiffusionPipeline.from_pretrained` * update TODO * replace `channels_last` kwarg with `memory_format` for more generality * revert the channels_last changes to leave it for another PR * remove non_blocking when moving input ids to device * remove blocking from all .to() operations at beginning of pipeline * fix merging * fix merging * model can run in other precisions without autocast * attn refactoring * Revert "attn refactoring" This reverts commit 0c70c0e189cd2c4d8768274c9fcf5b940ee310fb. * remove restriction to run conv_norm in fp32 * use `baddbmm` instead of `matmul`for better in attention for better perf * removing all reshapes to test perf * Revert "removing all reshapes to test perf" This reverts commit 006ccb8a8c6bc7eb7e512392e692a29d9b1553cd. * add shapes comments * hardcore whats needed for jitting * Revert "hardcore whats needed for jitting" This reverts commit 2fa9c698eae2890ac5f8e367ca80532ecf94df9a. * Revert "remove restriction to run conv_norm in fp32" This reverts commit cec592890c32da3d1b78d38b49e4307aedf459b9. * revert using baddmm in attention's forward * cleanup comment * remove restriction to run conv_norm in fp32. no quality loss was noticed This reverts commit cc9bc1339c998ebe9e7d733f910c6d72d9792213. * add more optimizations techniques to docs * Revert "add shapes comments" This reverts commit 31c58eadb8892f95478cdf05229adf678678c5f4. * apply suggestions * make quality * apply suggestions * styling * `scheduler.timesteps` are now arrays so we dont need .to() * remove useless .type() * use mean instead of max in `test_stable_diffusion_inpaint_pipeline_k_lms` * move scheduler timestamps to correct device if tensors * add device to `set_timesteps` in LMSD scheduler * `self.scheduler.set_timesteps` now uses device arg for schedulers that accept it * quick fix * styling * remove kwargs from schedulers `set_timesteps` * revert to using max in K-LMS inpaint pipeline test * Revert "`self.scheduler.set_timesteps` now uses device arg for schedulers that accept it" This reverts commit 00d5a51e5c20d8d445c8664407ef29608106d899. * move timesteps to correct device before loop in SD pipeline * apply previous fix to other SD pipelines * UNet now accepts tensor timesteps even on wrong device, to avoid errors - it shouldnt affect performance if timesteps are alrdy on correct device - it does slow down performance if they're on the wrong device * fix pipeline when timesteps are arrays with strides
-
- 08 Sep, 2022 1 commit
-
-
Kashif Rasul authored
* docs for attention * types for embeddings * unet2d docstrings * UNet2DConditionModel docstrings * fix typos * style and vq-vae docstrings * docstrings for VAE * Update src/diffusers/models/unet_2d.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * make style * added inherits from sentence * docstring to forward * make style * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * finish model docs * up Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 16 Aug, 2022 1 commit
-
-
Patrick von Platen authored
* [Half precision] Make sure half-precision is correct * Update src/diffusers/models/unet_2d.py * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py * correct some tests * Apply suggestions from code review Co-authored-by:
Suraj Patil <surajp815@gmail.com> * finalize * finish Co-authored-by:
Suraj Patil <surajp815@gmail.com>
-
- 19 Jul, 2022 1 commit
-
-
Patrick von Platen authored
* big purge * more fixes * finish for now
-
- 18 Jul, 2022 1 commit
-
-
Patrick von Platen authored
* up * more * uP * make dummy test pass * save intermediate * p * p * finish * finish * finish
-
- 28 Jun, 2022 1 commit
-
-
Patrick von Platen authored
-
- 27 Jun, 2022 6 commits
-
-
Patrick von Platen authored
-
Patrick von Platen authored
-
Patrick von Platen authored
-
patil-suraj authored
-
Patrick von Platen authored
-
Patrick von Platen authored
-