1. 30 May, 2025 1 commit
  2. 27 May, 2025 1 commit
  3. 01 May, 2025 1 commit
  4. 30 Apr, 2025 2 commits
  5. 23 Apr, 2025 1 commit
  6. 08 Apr, 2025 1 commit
  7. 24 Mar, 2025 1 commit
  8. 21 Mar, 2025 1 commit
    • Aryan's avatar
      [core] FasterCache (#10163) · 844221ae
      Aryan authored
      
      
      * init
      
      * update
      
      * update
      
      * update
      
      * make style
      
      * update
      
      * fix
      
      * make it work with guidance distilled models
      
      * update
      
      * make fix-copies
      
      * add tests
      
      * update
      
      * apply_faster_cache -> apply_fastercache
      
      * fix
      
      * reorder
      
      * update
      
      * refactor
      
      * update docs
      
      * add fastercache to CacheMixin
      
      * update tests
      
      * Apply suggestions from code review
      
      * make style
      
      * try to fix partial import error
      
      * Apply style fixes
      
      * raise warning
      
      * update
      
      ---------
      Co-authored-by: default avatargithub-actions[bot] <github-actions[bot]@users.noreply.github.com>
      844221ae
  9. 20 Mar, 2025 1 commit
  10. 18 Mar, 2025 2 commits
  11. 14 Feb, 2025 1 commit
    • Aryan's avatar
      Module Group Offloading (#10503) · 9a147b82
      Aryan authored
      
      
      * update
      
      * fix
      
      * non_blocking; handle parameters and buffers
      
      * update
      
      * Group offloading with cuda stream prefetching (#10516)
      
      * cuda stream prefetch
      
      * remove breakpoints
      
      * update
      
      * copy model hook implementation from pab
      
      * update; ~very workaround based implementation but it seems to work as expected; needs cleanup and rewrite
      
      * more workarounds to make it actually work
      
      * cleanup
      
      * rewrite
      
      * update
      
      * make sure to sync current stream before overwriting with pinned params
      
      not doing so will lead to erroneous computations on the GPU and cause bad results
      
      * better check
      
      * update
      
      * remove hook implementation to not deal with merge conflict
      
      * re-add hook changes
      
      * why use more memory when less memory do trick
      
      * why still use slightly more memory when less memory do trick
      
      * optimise
      
      * add model tests
      
      * add pipeline tests
      
      * update docs
      
      * add layernorm and groupnorm
      
      * address review comments
      
      * improve tests; add docs
      
      * improve docs
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * apply suggestions from code review
      
      * update tests
      
      * apply suggestions from review
      
      * enable_group_offloading -> enable_group_offload for naming consistency
      
      * raise errors if multiple offloading strategies used; add relevant tests
      
      * handle .to() when group offload applied
      
      * refactor some repeated code
      
      * remove unintentional change from merge conflict
      
      * handle .cuda()
      
      ---------
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      9a147b82
  12. 13 Feb, 2025 1 commit
    • Aryan's avatar
      Disable PEFT input autocast when using fp8 layerwise casting (#10685) · a0c22997
      Aryan authored
      * disable peft input autocast
      
      * use new peft method name; only disable peft input autocast if submodule layerwise casting active
      
      * add test; reference PeftInputAutocastDisableHook in peft docs
      
      * add load_lora_weights test
      
      * casted -> cast
      
      * Update tests/lora/utils.py
      a0c22997
  13. 27 Jan, 2025 1 commit
  14. 22 Jan, 2025 1 commit
    • Aryan's avatar
      [core] Layerwise Upcasting (#10347) · beacaa55
      Aryan authored
      
      
      * update
      
      * update
      
      * make style
      
      * remove dynamo disable
      
      * add coauthor
      Co-Authored-By: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * update
      
      * update
      
      * update
      
      * update mixin
      
      * add some basic tests
      
      * update
      
      * update
      
      * non_blocking
      
      * improvements
      
      * update
      
      * norm.* -> norm
      
      * apply suggestions from review
      
      * add example
      
      * update hook implementation to the latest changes from pyramid attention broadcast
      
      * deinitialize should raise an error
      
      * update doc page
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * update docs
      
      * update
      
      * refactor
      
      * fix _always_upcast_modules for asym ae and vq_model
      
      * fix lumina embedding forward to not depend on weight dtype
      
      * refactor tests
      
      * add simple lora inference tests
      
      * _always_upcast_modules -> _precision_sensitive_module_patterns
      
      * remove todo comments about review; revert changes to self.dtype in unets because .dtype on ModelMixin should be able to handle fp8 weight case
      
      * check layer dtypes in lora test
      
      * fix UNet1DModelTests::test_layerwise_upcasting_inference
      
      * _precision_sensitive_module_patterns -> _skip_layerwise_casting_patterns based on feedback
      
      * skip test in NCSNppModelTests
      
      * skip tests for AutoencoderTinyTests
      
      * skip tests for AutoencoderOobleckTests
      
      * skip tests for UNet1DModelTests - unsupported pytorch operations
      
      * layerwise_upcasting -> layerwise_casting
      
      * skip tests for UNetRLModelTests; needs next pytorch release for currently unimplemented operation support
      
      * add layerwise fp8 pipeline test
      
      * use xfail
      
      * Apply suggestions from code review
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * add assertion with fp32 comparison; add tolerance to fp8-fp32 vs fp32-fp32 comparison (required for a few models' test to pass)
      
      * add note about memory consumption on tesla CI runner for failing test
      
      ---------
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      beacaa55