- 20 Dec, 2022 1 commit
-
-
Patrick von Platen authored
* first proposal * rename * up * Apply suggestions from code review * better * up * finish * up * rename * correct versatile * up * up * up * up * fix * Apply suggestions from code review * make style * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * add error message Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 18 Dec, 2022 1 commit
-
-
Will Berman authored
* [wip] attention block updates * [wip] unCLIP unet decoder and super res * [wip] unCLIP prior transformer * [wip] scheduler changes * [wip] text proj utility class * [wip] UnCLIPPipeline * [wip] kakaobrain unCLIP convert script * [unCLIP pipeline] fixes re: @patrickvonplaten remove callbacks move denoising loops into call function * UNCLIPScheduler re: @patrickvonplaten Revert changes to DDPMScheduler. Make UNCLIPScheduler, a modified DDPM scheduler with changes to support karlo * mask -> attention_mask re: @patrickvonplaten * [DDPMScheduler] remove leftover change * [docs] PriorTransformer * [docs] UNet2DConditionModel and UNet2DModel * [nit] UNCLIPScheduler -> UnCLIPScheduler matches existing unclip naming better * [docs] SchedulingUnCLIP * [docs] UnCLIPTextProjModel * refactor * finish licenses * rename all to attention_mask and prep in models * more renaming * don't expose unused configs * final renaming fixes * remove x attn mask when not necessary * configure kakao script to use new class embedding config * fix copies * [tests] UnCLIPScheduler * finish x attn * finish * remove more * rename condition blocks * clean more * Apply suggestions from code review * up * fix * [tests] UnCLIPPipelineFastTests * remove unused imports * [tests] UnCLIPPipelineIntegrationTests * correct * make style Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 07 Dec, 2022 2 commits
-
-
Pedro Cuenca authored
* Make cross-attention check more robust. * Fix copies.
-
Suraj Patil authored
upcast attention
-
- 05 Dec, 2022 2 commits
-
-
Patrick von Platen authored
-
Suraj Patil authored
* make attn slice recursive * remove set_attention_slice from blocks * fix copies * make enable_attention_slicing base class method of DiffusionPipeline * fix set_attention_slice * fix set_attention_slice * fix copies * add tests * up * up * up * update * up * uP Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 02 Dec, 2022 3 commits
-
-
Patrick von Platen authored
-
Pedro Cuenca authored
* Do not use torch.long in mps Addresses #1056. * Use torch.int instead of float. * Propagate changes. * Do not silently change float -> int. * Propagate changes. * Apply suggestions from code review Co-authored-by:
Anton Lozhkov <anton@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co>
-
Benjamin Lefaudeux authored
* Moving the mem efficiient attention activation to the top + recursive * black, too bad there's no pre-commit ? Co-authored-by:Benjamin Lefaudeux <benjamin@photoroom.com>
-
- 24 Nov, 2022 2 commits
-
-
Anton Lozhkov authored
* Support SD2 attention slicing * Support SD2 attention slicing * Add more copies * Use attn_num_head_channels in blocks * fix-copies * Update tests * fix imports
-
Suraj Patil authored
* allow disabling self attention * add class_embedding * fix copies * fix condition * fix copies * do_self_attention -> only_cross_attention * fix copies * num_classes -> num_class_embeds * fix default value
-
- 23 Nov, 2022 3 commits
-
-
Suraj Patil authored
* boom boom * remove duplicate arg * add use_linear_proj arg * fix copies * style * add fast tests * use_linear_proj -> use_linear_projection
-
Patrick von Platen authored
* up * convert dual unet * revert dual attn * adapt for vd-official * test the full pipeline * mixed inference * mixed inference for text2img * add image prompting * fix clip norm * split text2img and img2img * fix format * refactor text2img * mega pipeline * add optimus * refactor image var * wip text_unet * text unet end to end * update tests * reshape * fix image to text * add some first docs * dual guided pipeline * fix token ratio * propose change * dual transformer as a native module * DualTransformer(nn.Module) * DualTransformer(nn.Module) * correct unconditional image * save-load with mega pipeline * remove image to text * up * uP * fix * up * final fix * remove_unused_weights * test updates * save progress * uP * fix dual prompts * some fixes * finish * style * finish renaming * up * fix * fix * fix * finish Co-authored-by:anton-l <anton@huggingface.co>
-
Penn authored
* fix non square images with UNet2DModel and DDIM/DDPM pipelines * fix unet_2d `sample_size` docstring * update pipeline tests for unet uncond Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 16 Nov, 2022 1 commit
-
-
Kamal Raj authored
* doc string args shape fix * fix styling
-
- 14 Nov, 2022 1 commit
-
-
Joshua Lochner authored
* Fix documentation typo * Fix other typo
-
- 02 Nov, 2022 1 commit
-
-
MatthieuTPHR authored
* 2x speedup using memory efficient attention * remove einops dependency * Swap K, M in op instantiation * Simplify code, remove unnecessary maybe_init call and function, remove unused self.scale parameter * make xformers a soft dependency * remove one-liner functions * change one letter variable to appropriate names * Remove Env variable dependency, remove MemoryEfficientCrossAttention class and use enable_xformers_memory_efficient_attention method * Add memory efficient attention toggle to img2img and inpaint pipelines * Clearer management of xformers' availability * update optimizations markdown to add info about memory efficient attention * add benchmarks for TITAN RTX * More detailed explanation of how the mem eff benchmark were ran * Removing autocast from optimization markdown * import_utils: import torch only if is available Co-authored-by:Nouamane Tazi <nouamane98@gmail.com>
-
- 25 Oct, 2022 1 commit
-
-
Patrick von Platen authored
* start * add more logic * Update src/diffusers/models/unet_2d_condition_flax.py * match weights * up * make model work * making class more general, fixing missed file rename * small fix * make new conversion work * up * finalize conversion * up * first batch of variable renamings * remove c and c_prev var names * add mid and out block structure * add pipeline * up * finish conversion * finish * upload * more fixes * Apply suggestions from code review * add attr * up * uP * up * finish tests * finish * uP * finish * fix test * up * naming consistency in tests * Apply suggestions from code review Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Nathan Lambert <nathan@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co> * remove hardcoded 16 * Remove bogus * fix some stuff * finish * improve logging * docs * upload Co-authored-by:
Nathan Lambert <nol@berkeley.edu> Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Nathan Lambert <nathan@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co>
-
- 12 Oct, 2022 1 commit
-
-
Nathan Lambert authored
* add or fix license formatting * fix quality
-
- 10 Oct, 2022 1 commit
-
-
Nathan Lambert authored
fix typo docstring
-
- 05 Oct, 2022 1 commit
-
-
Nicolas Patry authored
* Removing `autocast` for `35-25% speedup`. * iQuality * Adding a slow test. * Fixing mps noise generation. * Raising error on wrong device, instead of just casting on behalf of user. * Quality. * fix merge Co-authored-by:Nouamane Tazi <nouamane98@gmail.com>
-
- 04 Oct, 2022 1 commit
-
-
Pedro Cuenca authored
Remove comments no longer appropriate. There were casting operations before, they are now gone.
-
- 30 Sep, 2022 2 commits
-
-
Josh Achiam authored
* Allow resolutions that are not multiples of 64 * ran black * fix bug * add test * more explanation * more comments Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
Nouamane Tazi authored
* initial commit * make UNet stream capturable * try to fix noise_pred value * remove cuda graph and keep NB * non blocking unet with PNDMScheduler * make timesteps np arrays for pndm scheduler because lists don't get formatted to tensors in `self.set_format` * make max async in pndm * use channel last format in unet * avoid moving timesteps device in each unet call * avoid memcpy op in `get_timestep_embedding` * add `channels_last` kwarg to `DiffusionPipeline.from_pretrained` * update TODO * replace `channels_last` kwarg with `memory_format` for more generality * revert the channels_last changes to leave it for another PR * remove non_blocking when moving input ids to device * remove blocking from all .to() operations at beginning of pipeline * fix merging * fix merging * model can run in other precisions without autocast * attn refactoring * Revert "attn refactoring" This reverts commit 0c70c0e189cd2c4d8768274c9fcf5b940ee310fb. * remove restriction to run conv_norm in fp32 * use `baddbmm` instead of `matmul`for better in attention for better perf * removing all reshapes to test perf * Revert "removing all reshapes to test perf" This reverts commit 006ccb8a8c6bc7eb7e512392e692a29d9b1553cd. * add shapes comments * hardcore whats needed for jitting * Revert "hardcore whats needed for jitting" This reverts commit 2fa9c698eae2890ac5f8e367ca80532ecf94df9a. * Revert "remove restriction to run conv_norm in fp32" This reverts commit cec592890c32da3d1b78d38b49e4307aedf459b9. * revert using baddmm in attention's forward * cleanup comment * remove restriction to run conv_norm in fp32. no quality loss was noticed This reverts commit cc9bc1339c998ebe9e7d733f910c6d72d9792213. * add more optimizations techniques to docs * Revert "add shapes comments" This reverts commit 31c58eadb8892f95478cdf05229adf678678c5f4. * apply suggestions * make quality * apply suggestions * styling * `scheduler.timesteps` are now arrays so we dont need .to() * remove useless .type() * use mean instead of max in `test_stable_diffusion_inpaint_pipeline_k_lms` * move scheduler timestamps to correct device if tensors * add device to `set_timesteps` in LMSD scheduler * `self.scheduler.set_timesteps` now uses device arg for schedulers that accept it * quick fix * styling * remove kwargs from schedulers `set_timesteps` * revert to using max in K-LMS inpaint pipeline test * Revert "`self.scheduler.set_timesteps` now uses device arg for schedulers that accept it" This reverts commit 00d5a51e5c20d8d445c8664407ef29608106d899. * move timesteps to correct device before loop in SD pipeline * apply previous fix to other SD pipelines * UNet now accepts tensor timesteps even on wrong device, to avoid errors - it shouldnt affect performance if timesteps are alrdy on correct device - it does slow down performance if they're on the wrong device * fix pipeline when timesteps are arrays with strides
-
- 22 Sep, 2022 1 commit
-
-
Suraj Patil authored
* add grad ckpt to downsample blocks * make it work * don't pass gradient_checkpointing to upsample block * add tests for UNet2DConditionModel * add test_gradient_checkpointing * add gradient_checkpointing for up and down blocks * add functions to enable and disable grad ckpt * remove the forward argument * better naming * make supports_gradient_checkpointing private
-
- 15 Sep, 2022 2 commits
-
-
Pedro Cuenca authored
* First UNet Flax modeling blocks. Mimic the structure of the PyTorch files. The model classes themselves need work, depending on what we do about configuration and initialization. * Remove FlaxUNet2DConfig class. * ignore_for_config non-config args. * Implement `FlaxModelMixin` * Use new mixins for Flax UNet. For some reason the configuration is not correctly applied; the signature of the `__init__` method does not contain all the parameters by the time it's inspected in `extract_init_dict`. * Import `FlaxUNet2DConditionModel` if flax is available. * Rm unused method `framework` * Update src/diffusers/modeling_flax_utils.py Co-authored-by:
Suraj Patil <surajp815@gmail.com> * Indicate types in flax.struct.dataclass as pointed out by @mishig25 Co-authored-by:
Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu> * Fix typo in transformer block. * make style * some more changes * make style * Add comment * Update src/diffusers/modeling_flax_utils.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Rm unneeded comment * Update docstrings * correct ignore kwargs * make style * Update docstring examples * Make style * Style: remove empty line. * Apply style (after upgrading black from pinned version) * Remove some commented code and unused imports. * Add init_weights (not yet in use until #513). * Trickle down deterministic to blocks. * Rename q, k, v according to the latest PyTorch version. Note that weights were exported with the old names, so we need to be careful. * Flax UNet docstrings, default props as in PyTorch. * Fix minor typos in PyTorch docstrings. * Use FlaxUNet2DConditionOutput as output from UNet. * make style Co-authored-by:
Mishig Davaadorj <dmishig@gmail.com> Co-authored-by:
Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu> Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
Suraj Patil authored
* pass norm_num_groups to unet blocs and attention * fix UNet2DConditionModel * add norm_num_groups arg in vae * add tests * remove comment * Apply suggestions from code review
-
- 08 Sep, 2022 2 commits
-
-
Kashif Rasul authored
* docs for attention * types for embeddings * unet2d docstrings * UNet2DConditionModel docstrings * fix typos * style and vq-vae docstrings * docstrings for VAE * Update src/diffusers/models/unet_2d.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * make style * added inherits from sentence * docstring to forward * make style * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * finish model docs * up Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
Pedro Cuenca authored
* Initial support for mps in Stable Diffusion pipeline. * Initial "warmup" implementation when using mps. * Make some deterministic tests pass with mps. * Disable training tests when using mps. * SD: generate latents in CPU then move to device. This is especially important when using the mps device, because generators are not supported there. See for example https://github.com/pytorch/pytorch/issues/84288. In addition, the other pipelines seem to use the same approach: generate the random samples then move to the appropriate device. After this change, generating an image in MPS produces the same result as when using the CPU, if the same seed is used. * Remove prints. * Pass AutoencoderKL test_output_pretrained with mps. Sampling from `posterior` must be done in CPU. * Style * Do not use torch.long for log op in mps device. * Perform incompatible padding ops in CPU. UNet tests now pass. See https://github.com/pytorch/pytorch/issues/84535 * Style: fix import order. * Remove unused symbols. * Remove MPSWarmupMixin, do not apply automatically. We do apply warmup in the tests, but not during normal use. This adopts some PR suggestions by @patrickvonplaten. * Add comment for mps fallback to CPU step. * Add README_mps.md for mps installation and use. * Apply `black` to modified files. * Restrict README_mps to SD, show measures in table. * Make PNDM indexing compatible with mps. Addresses #239. * Do not use float64 when using LDMScheduler. Fixes #358. * Fix typo identified by @patil-suraj Co-authored-by:
Suraj Patil <surajp815@gmail.com> * Adapt example to new output style. * Restore 1:1 results reproducibility with CompVis. However, mps latents need to be generated in CPU because generators don't work in the mps device. * Move PyTorch nightly to requirements. * Adapt `test_scheduler_outputs_equivalence` ton MPS. * mps: skip training tests instead of ignoring silently. * Make VQModel tests pass on mps. * mps ddim tests: warmup, increase tolerance. * ScoreSdeVeScheduler indexing made mps compatible. * Make ldm pipeline tests pass using warmup. * Style * Simplify casting as suggested in PR. * Add Known Issues to readme. * `isort` import order. * Remove _mps_warmup helpers from ModelMixin. And just make changes to the tests. * Skip tests using unittest decorator for consistency. * Remove temporary var. * Remove spurious blank space. * Remove unused symbol. * Remove README_mps. Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
-
- 06 Sep, 2022 2 commits
-
-
Patrick von Platen authored
* up * add tests * correct * up * finish * better naming * Update README.md Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
Pedro Cuenca authored
Use `expand` instead of ones to broadcast tensor. As suggested by @bes-dev. According the documentation this shouldn't take any memory - it just plays with the strides.
-
- 05 Sep, 2022 1 commit
-
-
Patrick von Platen authored
* add outputs for models * add for pipelines * finish schedulers * better naming * adapt tests as well * replace dict access with . access * make schedulers works * finish * correct readme * make bcp compatible * up * small fix * finish * more fixes * more fixes * Apply suggestions from code review Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/models/vae.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Adapt model outputs * Apply more suggestions * finish examples * correct Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 03 Sep, 2022 1 commit
-
-
Sid Sahai authored
* add void check * remove void, add types for params
-
- 02 Sep, 2022 1 commit
-
-
Pedro Cuenca authored
* Use ONNX / Core ML compatible method to broadcast. Unfortunately `tile` could not be used either, it's still not compatible with ONNX. See #284. * Add comment about why broadcast_to is not used. Also, apply style to changed files. * Make sure broadcast remains in same device.
-
- 16 Aug, 2022 1 commit
-
-
Patrick von Platen authored
* [Half precision] Make sure half-precision is correct * Update src/diffusers/models/unet_2d.py * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py * correct some tests * Apply suggestions from code review Co-authored-by:
Suraj Patil <surajp815@gmail.com> * finalize * finish Co-authored-by:
Suraj Patil <surajp815@gmail.com>
-
- 05 Aug, 2022 1 commit
-
-
Suraj Patil authored
add cross_attention_dim as an argument
-
- 20 Jul, 2022 1 commit
-
-
Patrick von Platen authored
* up * change model name * renaming * more changes * up * up * up * save checkpoint * finish api / naming * finish config renaming * rename all weights * finish really
-