1. 09 Nov, 2023 1 commit
  2. 24 Oct, 2023 1 commit
    • dg845's avatar
      Add Latent Consistency Models Pipeline (#5448) · 958e17da
      dg845 authored
      
      
      * initial commit for LatentConsistencyModelPipeline and LCMScheduler based on the community pipeline
      
      * Add callback and freeu support.
      
      * apply suggestions from review
      
      * Clean up LCMScheduler
      
      * Remove timeindex argument to LCMScheduler.step.
      
      * Add support for clipping or thresholding the predicted original sample.
      
      * Remove unused methods and arguments in LCMScheduler.
      
      * Improve comment about (lack of) negative prompt support.
      
      * Change input guidance_scale to match the StableDiffusionPipeline (Imagen) CFG formulation.
      
      * Move lcm_origin_steps from pipeline __call__ to LCMScheduler.__init__/config (as origin_steps).
      
      * Fix typo when clipping/thresholding in LCMScheduler.
      
      * Add some initial LCMScheduler tests.
      
      * add type annotations from review
      
      * Fix type annotation bug.
      
      * Override test_add_noise_device in LCMSchedulerTest since hardcoded timesteps doesn't work under default settings.
      
      * Add generator argument pipeline prepare_latents call.
      
      * Cast LCMScheduler.timesteps to long in set_timesteps.
      
      * Add onestep and multistep full loop scheduler tests.
      
      * Set default height/width to None and don't hardcode guidance scale embedding dim.
      
      * Add initial LatentConsistencyPipeline fast and slow tests.
      
      * Add initial documentation for LatentConsistencyModelPipeline and LCMScheduler.
      
      * Make remaining failing fast tests pass.
      
      * make style
      
      * Make original_inference_steps configurable from pipeline __call__ again.
      
      * make style
      
      * Remove guidance_rescale arg from pipeline __call__ since LCM currently doesn't support CFG.
      
      * Make LCMScheduler defaults match config of LCM_Dreamshaper_v7 checkpoint.
      
      * Fix LatentConsistencyPipeline slow tests and add dummy expected slices.
      
      * Add checks for original_steps in LCMScheduler.set_timesteps.
      
      * make fix-copies
      
      * Improve LatentConsistencyModelPipeline docs.
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      
      * Update src/diffusers/schedulers/scheduling_lcm.py
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      
      * finish
      
      ---------
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAryan V S <avs050602@gmail.com>
      958e17da
  3. 15 Aug, 2023 1 commit
  4. 09 Aug, 2023 1 commit
    • Steven Liu's avatar
      [docs] Clean scheduler api (#4204) · 16ad13b6
      Steven Liu authored
      * clean scheduler mixin
      
      * up to dpmsolvermultistep
      
      * finish cleaning
      
      * first draft
      
      * fix overview table
      
      * apply feedback
      
      * update reference code
      16ad13b6
  5. 26 Jul, 2023 1 commit
  6. 05 Jul, 2023 1 commit
    • dg845's avatar
      Add Consistency Models Pipeline (#3492) · aed7499a
      dg845 authored
      
      
      * initial commit
      
      * Improve consistency models sampling implementation.
      
      * Add CMStochasticIterativeScheduler, which implements the multi-step sampler (stochastic_iterative_sampler) in the original code, and make further improvements to sampling.
      
      * Add Unet blocks for consistency models
      
      * Add conversion script for Unet
      
      * Fix bug in new unet blocks
      
      * Fix attention weight loading
      
      * Make design improvements to ConsistencyModelPipeline and CMStochasticIterativeScheduler and add initial version of tests.
      
      * make style
      
      * Make small random test UNet class conditional and set resnet_time_scale_shift to 'scale_shift' to better match consistency model checkpoints.
      
      * Add support for converting a test UNet and non-class-conditional UNets to the consistency models conversion script.
      
      * make style
      
      * Change num_class_embeds to 1000 to better match the original consistency models implementation.
      
      * Add support for distillation in pipeline_consistency_models.py.
      
      * Improve consistency model tests:
      	- Get small testing checkpoints from hub
      	- Modify tests to take into account "distillation" parameter of ConsistencyModelPipeline
      	- Add onestep, multistep tests for distillation and distillation + class conditional
      	- Add expected image slices for onestep tests
      
      * make style
      
      * Improve ConsistencyModelPipeline:
      	- Add initial support for class-conditional generation
      	- Fix initial sigma for onestep generation
      	- Fix some sigma shape issues
      
      * make style
      
      * Improve ConsistencyModelPipeline:
      	- add latents __call__ argument and prepare_latents method
      	- add check_inputs method
      	- add initial docstrings for ConsistencyModelPipeline.__call__
      
      * make style
      
      * Fix bug when randomly generating class labels for class-conditional generation.
      
      * Switch CMStochasticIterativeScheduler to configuring a sigma schedule and make related changes to the pipeline and tests.
      
      * Remove some unused code and make style.
      
      * Fix small bug in CMStochasticIterativeScheduler.
      
      * Add expected slices for multistep sampling tests and make them pass.
      
      * Work on consistency model fast tests:
      	- in pipeline, call self.scheduler.scale_model_input before denoising
      	- get expected slices for Euler and Heun scheduler tests
      	- make Euler test pass
      	- mark Heun test as expected fail because it doesn't support prediction_type "sample" yet
      	- remove DPM and Euler Ancestral tests because they don't support use_karras_sigmas
      
      * make style
      
      * Refactor conversion script to make it easier to add more model architectures to convert in the future.
      
      * Work on ConsistencyModelPipeline tests:
      	- Fix device bug when handling class labels in ConsistencyModelPipeline.__call__
      	- Add slow tests for onestep and multistep sampling and make them pass
      	- Refactor fast tests
      	- Refactor ConsistencyModelPipeline.__init__
      
      * make style
      
      * Remove the add_noise and add_noise_to_input methods from CMStochasticIterativeScheduler for now.
      
      * Run python utils/check_copies.py --fix_and_overwrite
      python utils/check_dummies.py --fix_and_overwrite to make dummy objects for new pipeline and scheduler.
      
      * Make fast tests from PipelineTesterMixin pass.
      
      * make style
      
      * Refactor consistency models pipeline and scheduler:
      	- Remove support for Karras schedulers (only support CMStochasticIterativeScheduler)
      	- Move sigma manipulation, input scaling, denoising from pipeline to scheduler
      	- Make corresponding changes to tests and ensure they pass
      
      * make style
      
      * Add docstrings and further refactor pipeline and scheduler.
      
      * make style
      
      * Add initial version of the consistency models documentation.
      
      * Refactor custom timesteps logic following DDPMScheduler/IFPipeline and temporarily add torch 2.0 SDPA kernel selection logic for debugging.
      
      * make style
      
      * Convert current slow tests to use fp16 and flash attention.
      
      * make style
      
      * Add slow tests for normal attention on cuda device.
      
      * make style
      
      * Fix attention weights loading
      
      * Update consistency model fast tests for new test checkpoints with attention fix.
      
      * make style
      
      * apply suggestions
      
      * Add add_noise method to CMStochasticIterativeScheduler (copied from EulerDiscreteScheduler).
      
      * Conversion script now outputs pipeline instead of UNet and add support for LSUN-256 models and different schedulers.
      
      * When both timesteps and num_inference_steps are supplied, raise warning instead of error (timesteps take precedence).
      
      * make style
      
      * Add remaining diffusers model checkpoints for models in the original consistency model release and update usage example.
      
      * apply suggestions from review
      
      * make style
      
      * fix attention naming
      
      * Add tests for CMStochasticIterativeScheduler.
      
      * make style
      
      * Make CMStochasticIterativeScheduler tests pass.
      
      * make style
      
      * Override test_step_shape in CMStochasticIterativeSchedulerTest instead of modifying it in SchedulerCommonTest.
      
      * make style
      
      * rename some models
      
      * Improve API
      
      * rename some models
      
      * Remove duplicated block
      
      * Add docstring and make torch compile work
      
      * More fixes
      
      * Fixes
      
      * Apply suggestions from code review
      
      * Apply suggestions from code review
      
      * add more docstring
      
      * update consistency conversion script
      
      ---------
      Co-authored-by: default avatarayushmangal <ayushmangal@microsoft.com>
      Co-authored-by: default avatarAyush Mangal <43698245+ayushtues@users.noreply.github.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      aed7499a
  7. 16 Jun, 2023 1 commit
  8. 07 Jun, 2023 1 commit
  9. 16 May, 2023 1 commit
  10. 27 Apr, 2023 1 commit
    • Nipun Jindal's avatar
      [2064]: Add stochastic sampler (sample_dpmpp_sde) (#3020) · fd512d74
      Nipun Jindal authored
      
      
      * [2064]: Add stochastic sampler
      
      * [2064]: Add stochastic sampler
      
      * [2064]: Add stochastic sampler
      
      * [2064]: Add stochastic sampler
      
      * [2064]: Add stochastic sampler
      
      * [2064]: Add stochastic sampler
      
      * [2064]: Add stochastic sampler
      
      * Review comments
      
      * [Review comment]: Add is_torchsde_available()
      
      * [Review comment]: Test and docs
      
      * [Review comment]
      
      * [Review comment]
      
      * [Review comment]
      
      * [Review comment]
      
      * [Review comment]
      
      ---------
      Co-authored-by: default avatarnjindal <njindal@adobe.com>
      fd512d74
  11. 04 Apr, 2023 6 commits
  12. 01 Mar, 2023 1 commit
  13. 17 Feb, 2023 1 commit
  14. 16 Feb, 2023 1 commit
  15. 15 Feb, 2023 1 commit
  16. 17 Jan, 2023 1 commit
    • Kashif Rasul's avatar
      DiT Pipeline (#1806) · 37d113cc
      Kashif Rasul authored
      
      
      * added dit model
      
      * import
      
      * initial pipeline
      
      * initial convert script
      
      * initial pipeline
      
      * make style
      
      * raise valueerror
      
      * single function
      
      * rename classes
      
      * use DDIMScheduler
      
      * timesteps embedder
      
      * samples to cpu
      
      * fix var names
      
      * fix numpy type
      
      * use timesteps class for proj
      
      * fix typo
      
      * fix arg name
      
      * flip_sin_to_cos and better var names
      
      * fix C shape cal
      
      * make style
      
      * remove unused imports
      
      * cleanup
      
      * add back patch_size
      
      * initial dit doc
      
      * typo
      
      * Update docs/source/api/pipelines/dit.mdx
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * added copyright license headers
      
      * added example usage and toc
      
      * fix variable names asserts
      
      * remove comment
      
      * added docs
      
      * fix typo
      
      * upstream changes
      
      * set proper device for drop_ids
      
      * added initial dit pipeline test
      
      * update docs
      
      * fix imports
      
      * make fix-copies
      
      * isort
      
      * fix imports
      
      * get rid of more magic numbers
      
      * fix code when guidance is off
      
      * remove block_kwargs
      
      * cleanup script
      
      * removed to_2tuple
      
      * use FeedForward class instead of another MLP
      
      * style
      
      * work on mergint DiTBlock with BasicTransformerBlock
      
      * added missing final_dropout and args to BasicTransformerBlock
      
      * use norm from block
      
      * fix arg
      
      * remove unused arg
      
      * fix call to class_embedder
      
      * use timesteps
      
      * make style
      
      * attn_output gets multiplied
      
      * removed commented code
      
      * use Transformer2D
      
      * use self.is_input_patches
      
      * fix flags
      
      * fixed conversion to use Transformer2DModel
      
      * fixes for pipeline
      
      * remove dit.py
      
      * fix timesteps device
      
      * use randn_tensor and fix fp16 inf.
      
      * timesteps_emb already the right dtype
      
      * fix dit test class
      
      * fix test and style
      
      * fix norm2 usage in vq-diffusion
      
      * added author names to pipeline and lmagenet labels link
      
      * fix tests
      
      * use norm_type as string
      
      * rename dit to transformer
      
      * fix name
      
      * fix test
      
      * set  norm_type = "layer" by default
      
      * fix tests
      
      * do not skip common tests
      
      * Update src/diffusers/models/attention.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * revert AdaLayerNorm API
      
      * fix norm_type name
      
      * make sure all components are in eval mode
      
      * revert norm2 API
      
      * compact
      
      * finish deprecation
      
      * add slow tests
      
      * remove @
      
      * refactor some stuff
      
      * upload
      
      * Update src/diffusers/pipelines/dit/pipeline_dit.py
      
      * finish more
      
      * finish docs
      
      * improve docs
      
      * finish docs
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      37d113cc
  17. 04 Jan, 2023 2 commits