1. 30 Dec, 2022 1 commit
  2. 19 Dec, 2022 1 commit
  3. 14 Nov, 2022 1 commit
    • Nathan Lambert's avatar
      Add UNet 1d for RL model for planning + colab (#105) · 7c5fef81
      Nathan Lambert authored
      
      
      * re-add RL model code
      
      * match model forward api
      
      * add register_to_config, pass training tests
      
      * fix tests, update forward outputs
      
      * remove unused code, some comments
      
      * add to docs
      
      * remove extra embedding code
      
      * unify time embedding
      
      * remove conv1d output sequential
      
      * remove sequential from conv1dblock
      
      * style and deleting duplicated code
      
      * clean files
      
      * remove unused variables
      
      * clean variables
      
      * add 1d resnet block structure for downsample
      
      * rename as unet1d
      
      * fix renaming
      
      * rename files
      
      * add get_block(...) api
      
      * unify args for model1d like model2d
      
      * minor cleaning
      
      * fix docs
      
      * improve 1d resnet blocks
      
      * fix tests, remove permuts
      
      * fix style
      
      * add output activation
      
      * rename flax blocks file
      
      * Add Value Function and corresponding example script to Diffuser implementation (#884)
      
      * valuefunction code
      
      * start example scripts
      
      * missing imports
      
      * bug fixes and placeholder example script
      
      * add value function scheduler
      
      * load value function from hub and get best actions in example
      
      * very close to working example
      
      * larger batch size for planning
      
      * more tests
      
      * merge unet1d changes
      
      * wandb for debugging, use newer models
      
      * success!
      
      * turns out we just need more diffusion steps
      
      * run on modal
      
      * merge and code cleanup
      
      * use same api for rl model
      
      * fix variance type
      
      * wrong normalization function
      
      * add tests
      
      * style
      
      * style and quality
      
      * edits based on comments
      
      * style and quality
      
      * remove unused var
      
      * hack unet1d into a value function
      
      * add pipeline
      
      * fix arg order
      
      * add pipeline to core library
      
      * community pipeline
      
      * fix couple shape bugs
      
      * style
      
      * Apply suggestions from code review
      Co-authored-by: default avatarNathan Lambert <nathan@huggingface.co>
      
      * update post merge of scripts
      
      * add mdiblock / outblock architecture
      
      * Pipeline cleanup (#947)
      
      * valuefunction code
      
      * start example scripts
      
      * missing imports
      
      * bug fixes and placeholder example script
      
      * add value function scheduler
      
      * load value function from hub and get best actions in example
      
      * very close to working example
      
      * larger batch size for planning
      
      * more tests
      
      * merge unet1d changes
      
      * wandb for debugging, use newer models
      
      * success!
      
      * turns out we just need more diffusion steps
      
      * run on modal
      
      * merge and code cleanup
      
      * use same api for rl model
      
      * fix variance type
      
      * wrong normalization function
      
      * add tests
      
      * style
      
      * style and quality
      
      * edits based on comments
      
      * style and quality
      
      * remove unused var
      
      * hack unet1d into a value function
      
      * add pipeline
      
      * fix arg order
      
      * add pipeline to core library
      
      * community pipeline
      
      * fix couple shape bugs
      
      * style
      
      * Apply suggestions from code review
      
      * clean up comments
      
      * convert older script to using pipeline and add readme
      
      * rename scripts
      
      * style, update tests
      
      * delete unet rl model file
      
      * remove imports in src
      Co-authored-by: default avatarNathan Lambert <nathan@huggingface.co>
      
      * Update src/diffusers/models/unet_1d_blocks.py
      
      * Update tests/test_models_unet.py
      
      * RL Cleanup v2 (#965)
      
      * valuefunction code
      
      * start example scripts
      
      * missing imports
      
      * bug fixes and placeholder example script
      
      * add value function scheduler
      
      * load value function from hub and get best actions in example
      
      * very close to working example
      
      * larger batch size for planning
      
      * more tests
      
      * merge unet1d changes
      
      * wandb for debugging, use newer models
      
      * success!
      
      * turns out we just need more diffusion steps
      
      * run on modal
      
      * merge and code cleanup
      
      * use same api for rl model
      
      * fix variance type
      
      * wrong normalization function
      
      * add tests
      
      * style
      
      * style and quality
      
      * edits based on comments
      
      * style and quality
      
      * remove unused var
      
      * hack unet1d into a value function
      
      * add pipeline
      
      * fix arg order
      
      * add pipeline to core library
      
      * community pipeline
      
      * fix couple shape bugs
      
      * style
      
      * Apply suggestions from code review
      
      * clean up comments
      
      * convert older script to using pipeline and add readme
      
      * rename scripts
      
      * style, update tests
      
      * delete unet rl model file
      
      * remove imports in src
      
      * add specific vf block and update tests
      
      * style
      
      * Update tests/test_models_unet.py
      Co-authored-by: default avatarNathan Lambert <nathan@huggingface.co>
      
      * fix quality in tests
      
      * fix quality style, split test file
      
      * fix checks / tests
      
      * make timesteps closer to main
      
      * unify block API
      
      * unify forward api
      
      * delete lines in examples
      
      * style
      
      * examples style
      
      * all tests pass
      
      * make style
      
      * make dance_diff test pass
      
      * Refactoring RL PR (#1200)
      
      * init file changes
      
      * add import utils
      
      * finish cleaning files, imports
      
      * remove import flags
      
      * clean examples
      
      * fix imports, tests for merge
      
      * update readmes
      
      * hotfix for tests
      
      * quality
      
      * fix some tests
      
      * change defaults
      
      * more mps test fixes
      
      * unet1d defaults
      
      * do not default import experimental
      
      * defaults for tests
      
      * fix tests
      
      * fix-copies
      
      * fix
      
      * changes per Patrik's comments (#1285)
      
      * changes per Patrik's comments
      
      * update conversion script
      
      * fix renaming
      
      * skip more mps tests
      
      * last test fix
      
      * Update examples/rl/README.md
      Co-authored-by: default avatarBen Glickenhaus <benglickenhaus@gmail.com>
      7c5fef81
  4. 03 Nov, 2022 1 commit
    • Will Berman's avatar
      VQ-diffusion (#658) · ef2ea33c
      Will Berman authored
      
      
      * Changes for VQ-diffusion VQVAE
      
      Add specify dimension of embeddings to VQModel:
      `VQModel` will by default set the dimension of embeddings to the number
      of latent channels. The VQ-diffusion VQVAE has a smaller
      embedding dimension, 128, than number of latent channels, 256.
      
      Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down
      unet block helpers. VQ-diffusion's VQVAE uses those two block types.
      
      * Changes for VQ-diffusion transformer
      
      Modify attention.py so SpatialTransformer can be used for
      VQ-diffusion's transformer.
      
      SpatialTransformer:
      - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous.
      - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs
      - modified forward pass to take optional timestep embeddings
      
      ImagePositionalEmbeddings:
      - added to provide positional embeddings to discrete inputs for latent pixels
      
      BasicTransformerBlock:
      - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings
      - modified forward pass to take optional timestep embeddings
      
      CrossAttention:
      - now may optionally take a bias parameter for its query, key, and value linear layers
      
      FeedForward:
      - Internal layers are now configurable
      
      ApproximateGELU:
      - Activation function in VQ-diffusion's feedforward layer
      
      AdaLayerNorm:
      - Norm layer modified to incorporate timestep embeddings
      
      * Add VQ-diffusion scheduler
      
      * Add VQ-diffusion pipeline
      
      * Add VQ-diffusion convert script to diffusers
      
      * Add VQ-diffusion dummy objects
      
      * Add VQ-diffusion markdown docs
      
      * Add VQ-diffusion tests
      
      * some renaming
      
      * some fixes
      
      * more renaming
      
      * correct
      
      * fix typo
      
      * correct weights
      
      * finalize
      
      * fix tests
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * finish
      
      * finish
      
      * up
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      ef2ea33c
  5. 25 Oct, 2022 1 commit
  6. 06 Oct, 2022 2 commits
  7. 23 Sep, 2022 1 commit
    • Younes Belkada's avatar
      Flax documentation (#589) · 8b0be935
      Younes Belkada authored
      
      
      * documenting `attention_flax.py` file
      
      * documenting `embeddings_flax.py`
      
      * documenting `unet_blocks_flax.py`
      
      * Add new objs to doc page
      
      * document `vae_flax.py`
      
      * Apply suggestions from code review
      
      * modify `unet_2d_condition_flax.py`
      
      * make style
      
      * Apply suggestions from code review
      
      * make style
      
      * Apply suggestions from code review
      
      * fix indent
      
      * fix typo
      
      * fix indent unet
      
      * Update src/diffusers/models/vae_flax.py
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      Co-authored-by: default avatarMishig Davaadorj <dmishig@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      8b0be935
  8. 08 Sep, 2022 1 commit
  9. 07 Sep, 2022 1 commit
  10. 13 Jul, 2022 1 commit
    • Nathan Lambert's avatar
      Docs (#45) · c3d78cd3
      Nathan Lambert authored
      * first pass at docs structure
      
      * minor reformatting, add github actions for docs
      
      * populate docs (primarily from README, some writing)
      c3d78cd3