1. 11 May, 2023 1 commit
  2. 10 May, 2023 1 commit
  3. 09 May, 2023 2 commits
    • Steven Liu's avatar
      [docs] Improve safetensors docstring (#3368) · 26832aa5
      Steven Liu authored
      * clarify safetensor docstring
      
      * fix typo
      
      * apply feedback
      26832aa5
    • Will Berman's avatar
      if dreambooth lora (#3360) · a757b2db
      Will Berman authored
      * update IF stage I pipelines
      
      add fixed variance schedulers and lora loading
      
      * added kv lora attn processor
      
      * allow loading into alternative lora attn processor
      
      * make vae optional
      
      * throw away predicted variance
      
      * allow loading into added kv lora layer
      
      * allow load T5
      
      * allow pre compute text embeddings
      
      * set new variance type in schedulers
      
      * fix copies
      
      * refactor all prompt embedding code
      
      class prompts are now included in pre-encoding code
      max tokenizer length is now configurable
      embedding attention mask is now configurable
      
      * fix for when variance type is not defined on scheduler
      
      * do not pre compute validation prompt if not present
      
      * add example test for if lora dreambooth
      
      * add check for train text encoder and pre compute text embeddings
      a757b2db
  4. 05 May, 2023 1 commit
  5. 02 May, 2023 1 commit
  6. 01 May, 2023 1 commit
    • Patrick von Platen's avatar
      Torch compile graph fix (#3286) · 0e82fb19
      Patrick von Platen authored
      * fix more
      
      * Fix more
      
      * fix more
      
      * Apply suggestions from code review
      
      * fix
      
      * make style
      
      * make fix-copies
      
      * fix
      
      * make sure torch compile
      
      * Clean
      
      * fix test
      0e82fb19
  7. 28 Apr, 2023 1 commit
  8. 26 Apr, 2023 1 commit
  9. 25 Apr, 2023 1 commit
    • Patrick von Platen's avatar
      add model (#3230) · e51f19ae
      Patrick von Platen authored
      
      
      * add
      
      * clean
      
      * up
      
      * clean up more
      
      * fix more tests
      
      * Improve docs further
      
      * improve
      
      * more fixes docs
      
      * Improve docs more
      
      * Update src/diffusers/models/unet_2d_condition.py
      
      * fix
      
      * up
      
      * update doc links
      
      * make fix-copies
      
      * add safety checker and watermarker to stage 3 doc page code snippets
      
      * speed optimizations docs
      
      * memory optimization docs
      
      * make style
      
      * add watermarking snippets to doc string examples
      
      * make style
      
      * use pt_to_pil helper functions in doc strings
      
      * skip mps tests
      
      * Improve safety
      
      * make style
      
      * new logic
      
      * fix
      
      * fix bad onnx design
      
      * make new stable diffusion upscale pipeline model arguments optional
      
      * define has_nsfw_concept when non-pil output type
      
      * lowercase linked to notebook name
      
      ---------
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      e51f19ae
  10. 24 Apr, 2023 1 commit
  11. 22 Apr, 2023 1 commit
  12. 21 Apr, 2023 1 commit
  13. 20 Apr, 2023 1 commit
    • nupurkmr9's avatar
      adding custom diffusion training to diffusers examples (#3031) · 3979aac9
      nupurkmr9 authored
      
      
      * diffusers==0.14.0 update
      
      * custom diffusion update
      
      * custom diffusion update
      
      * custom diffusion update
      
      * custom diffusion update
      
      * custom diffusion update
      
      * custom diffusion update
      
      * custom diffusion
      
      * custom diffusion
      
      * custom diffusion
      
      * custom diffusion
      
      * custom diffusion
      
      * apply formatting and get rid of bare except.
      
      * refactor readme and other minor changes.
      
      * misc refactor.
      
      * fix: repo_id issue and loaders logging bug.
      
      * fix: save_model_card.
      
      * fix: save_model_card.
      
      * fix: save_model_card.
      
      * add: doc entry.
      
      * refactor doc,.
      
      * custom diffusion
      
      * custom diffusion
      
      * custom diffusion
      
      * apply style.
      
      * remove tralining whitespace.
      
      * fix: toctree entry.
      
      * remove unnecessary print.
      
      * custom diffusion
      
      * custom diffusion
      
      * custom diffusion test
      
      * custom diffusion xformer update
      
      * custom diffusion xformer update
      
      * custom diffusion xformer update
      
      ---------
      Co-authored-by: default avatarNupur Kumari <nupurkumari@Nupurs-MacBook-Pro.local>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarNupur Kumari <nupurkumari@nupurs-mbp.wifi.local.cmu.edu>
      3979aac9
  14. 19 Apr, 2023 1 commit
  15. 18 Apr, 2023 2 commits
  16. 17 Apr, 2023 1 commit
  17. 16 Apr, 2023 1 commit
  18. 14 Apr, 2023 1 commit
  19. 12 Apr, 2023 2 commits
  20. 11 Apr, 2023 8 commits
    • Will Berman's avatar
      Attn added kv processor torch 2.0 block (#3023) · ea39cd7e
      Will Berman authored
      add AttnAddedKVProcessor2_0 block
      ea39cd7e
    • Will Berman's avatar
      Attention processor cross attention norm group norm (#3021) · 98c5e5da
      Will Berman authored
      add group norm type to attention processor cross attention norm
      
      This lets the cross attention norm use both a group norm block and a
      layer norm block.
      
      The group norm operates along the channels dimension
      and requires input shape (batch size, channels, *) where as the layer norm with a single
      `normalized_shape` dimension only operates over the least significant
      dimension i.e. (*, channels).
      
      The channels we want to normalize are the hidden dimension of the encoder hidden states.
      
      By convention, the encoder hidden states are always passed as (batch size, sequence
      length, hidden states).
      
      This means the layer norm can operate on the tensor without modification, but the group
      norm requires flipping the last two dimensions to operate on (batch size, hidden states, sequence length).
      
      All existing attention processors will have the same logic and we can
      consolidate it in a helper function `prepare_encoder_hidden_states`
      
      prepare_encoder_hidden_states -> norm_encoder_hidden_states re: @patrickvonplaten
      
      move norm_cross defined check to outside norm_encoder_hidden_states
      
      add missing attn.norm_cross check
      98c5e5da
    • Will Berman's avatar
      unet time embedding activation function (#3048) · 2d52e81c
      Will Berman authored
      * unet time embedding activation function
      
      * typo act_fn -> time_embedding_act_fn
      
      * flatten conditional
      2d52e81c
    • Chanchana Sornsoontorn's avatar
      Fix typo and format BasicTransformerBlock attributes (#2953) · 52c4d32d
      Chanchana Sornsoontorn authored
      * ️chore(train_controlnet) fix typo in logger message
      
      * ️chore(models) refactor modules order; make them the same as calling order
      
      When printing the BasicTransformerBlock to stdout, I think it's crucial that the attributes order are shown in proper order. And also previously the "3. Feed Forward" comment was not making sense. It should have been close to self.ff but it's instead next to self.norm3
      
      * correct many tests
      
      * remove bogus file
      
      * make style
      
      * correct more tests
      
      * finish tests
      
      * fix one more
      
      * make style
      
      * make unclip deterministic
      
      * 
      
      ️chore(models/attention) reorganize comments in BasicTransformerBlock class
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      52c4d32d
    • Will Berman's avatar
      add only cross attention to simple attention blocks (#3011) · c6180a31
      Will Berman authored
      * add only cross attention to simple attention blocks
      
      * add test for only_cross_attention re: @patrickvonplaten
      
      * mid_block_only_cross_attention better default
      
      allow mid_block_only_cross_attention to default to
      `only_cross_attention` when `only_cross_attention` is given
      as a single boolean
      c6180a31
    • George Ogden's avatar
      Update documentation (#2996) · cb63febf
      George Ogden authored
      * Update documentation
      
      Based on sampling, the width and height must be powers of 2 as the samples halve in size each time
      
      * make style
      cb63febf
    • Will Berman's avatar
      `AttentionProcessor.group_norm` num_channels should be `query_dim` (#3046) · 8c6b47cf
      Will Berman authored
      * `AttentionProcessor.group_norm` num_channels should be `query_dim`
      
      The group_norm on the attention processor should really norm the number
      of channels in the query _not_ the inner dim. This wasn't caught before
      because the group_norm is only used by the added kv attention processors
      and the added kv attention processors are only used by the karlo models
      which are configured such that the inner dim is the same as the query
      dim.
      
      * add_{k,v}_proj should be projecting to inner_dim
      8c6b47cf
    • Patrick von Platen's avatar
      Fix config prints and save, load of pipelines (#2849) · 8b451eb6
      Patrick von Platen authored
      * [Config] Fix config prints and save, load
      
      * Only use potential nn.Modules for dtype and device
      
      * Correct vae image processor
      
      * make sure in_channels is not accessed directly
      
      * make sure in channels is only accessed via config
      
      * Make sure schedulers only access config attributes
      
      * Make sure to access config in SAG
      
      * Fix vae processor and make style
      
      * add tests
      
      * uP
      
      * make style
      
      * Fix more naming issues
      
      * Final fix with vae config
      
      * change more
      8b451eb6
  21. 10 Apr, 2023 5 commits
  22. 30 Mar, 2023 1 commit
  23. 28 Mar, 2023 2 commits
  24. 27 Mar, 2023 2 commits