"src/vscode:/vscode.git/clone" did not exist on "3521fbe9aec102f59e18f8336510f646c4759f29"
- 27 Mar, 2023 1 commit
-
-
Pedro Cuenca authored
* Apply same ruff settings as in transformers See https://github.com/huggingface/transformers/blob/main/pyproject.toml Co-authored-by:
Aaron Gokaslan <aaronGokaslan@gmail.com> * Apply new style rules * Style Co-authored-by:
Aaron Gokaslan <aaronGokaslan@gmail.com> * style * remove list, ruff wouldn't auto fix. --------- Co-authored-by:
Aaron Gokaslan <aaronGokaslan@gmail.com>
-
- 23 Mar, 2023 3 commits
-
-
Sanchit Gandhi authored
* Add AudioLDM * up * add vocoder * start unet * unconditional unet * clap, vocoder and vae * clean-up: conversion scripts * fix: conversion script token_type_ids * clean-up: pipeline docstring * tests: from SD * clean-up: cpu offload vocoder instead of safety checker * feat: adapt tests to audioldm * feat: add docs * clean-up: amend pipeline docstrings * clean-up: make style * clean-up: make fix-copies * fix: add doc path to toctree * clean-up: args for conversion script * clean-up: paths to checkpoints * fix: use conditional unet * clean-up: make style * fix: type hints for UNet * clean-up: docstring for UNet * clean-up: make style * clean-up: remove duplicate in docstring * clean-up: make style * clean-up: make fix-copies * clean-up: move imports to start in code snippet * fix: pass cross_attention_dim as a list/tuple to unet * clean-up: make fix-copies * fix: update checkpoint path * fix: unet cross_attention_dim in tests * film embeddings -> class embeddings * Apply suggestions from code review Co-authored-by:
Will Berman <wlbberman@gmail.com> * fix: unet film embed to use existing args * fix: unet tests to use existing args * fix: make style * fix: transformers import and version in init * clean-up: make style * Revert "clean-up: make style" This reverts commit 5d6d1f8b324f5583e7805dc01e2c86e493660d66. * clean-up: make style * clean-up: use pipeline tester mixin tests where poss * clean-up: skip attn slicing test * fix: add torch dtype to docs * fix: remove conversion script out of src * fix: remove .detach from 1d waveform * fix: reduce default num inf steps * fix: swap height/width -> audio_length_in_s * clean-up: make style * fix: remove nightly tests * fix: imports in conversion script * clean-up: slim-down to two slow tests * clean-up: slim-down fast tests * fix: batch consistent tests * clean-up: make style * clean-up: remove vae slicing fast test * clean-up: propagate changes to doc * fix: increase test tol to 1e-2 * clean-up: finish docs * clean-up: make style * feat: vocoder / VAE compatibility check * feat: possibly expand / cut audio waveform * fix: pipeline call signature test * fix: slow tests output len * clean-up: make style * make style --------- Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
William Berman <WLBberman@gmail.com>
-
Kashif Rasul authored
* initial TokenEncoder and ContinuousEncoder * initial modules * added ContinuousContextTransformer * fix copy paste error * use numpy for get_sequence_length * initial terminal relative positional encodings * fix weights keys * fix assert * cross attend style: concat encodings * make style * concat once * fix formatting * Initial SpectrogramPipeline * fix input_tokens * make style * added mel output * ignore weights for config * move mel to numpy * import pipeline * fix class names and import * moved models to models folder * import ContinuousContextTransformer and SpectrogramDiffusionPipeline * initial spec diffusion converstion script * renamed config to t5config * added weight loading * use arguments instead of t5config * broadcast noise time to batch dim * fix call * added scale_to_features * fix weights * transpose laynorm weight * scale is a vector * scale the query outputs * added comment * undo scaling * undo depth_scaling * inital get_extended_attention_mask * attention_mask is none in self-attention * cleanup * manually invert attention * nn.linear need bias=False * added T5LayerFFCond * remove to fix conflict * make style and dummy * remove unsed variables * remove predict_epsilon * Move accelerate to a soft-dependency (#1134) * finish * finish * Update src/diffusers/modeling_utils.py * Update src/diffusers/pipeline_utils.py Co-authored-by:
Anton Lozhkov <anton@huggingface.co> * more fixes * fix Co-authored-by:
Anton Lozhkov <anton@huggingface.co> * fix order * added initial midi to note token data pipeline * added int to int tokenizer * remove duplicate * added logic for segments * add melgan to pipeline * move autoregressive gen into pipeline * added note_representation_processor_chain * fix dtypes * remove immutabledict req * initial doc * use np.where * require note_seq * fix typo * update dependency * added note-seq to test * added is_note_seq_available * fix import * added toc * added example usage * undo for now * moved docs * fix merge * fix imports * predict first segment * avoid un-needed copy to and from cpu * make style * Copyright * fix style * add test and fix inference steps * remove bogus files * reorder models * up * remove transformers dependency * make work with diffusers cross attention * clean more * remove @ * improve further * up * uP * Apply suggestions from code review * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py * loop over all tokens * make style * Added a section on the model * fix formatting * grammer * formatting * make fix-copies * Update src/diffusers/pipelines/__init__.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * added callback ad optional ionnx * do not squeeze batch dim * clean up more * upload * convert jax to nnumpy * make style * fix warning * make fix-copies * fix warning * add initial fast tests * add initial pipeline_params * eval mode due to dropout * skip batch tests as pipeline runs on a single file * make style * fix relative path * fix doc tests * Update src/diffusers/models/t5_film_transformer.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/models/t5_film_transformer.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update docs/source/en/api/pipelines/spectrogram_diffusion.mdx Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * add MidiProcessor * format * fix org * Apply suggestions from code review * Update tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py * make style * pin protobuf to <4 * fix formatting * white space * tensorboard needs protobuf --------- Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Anton Lozhkov <anton@huggingface.co>
-
Naoki Ainoya authored
The 'CLIPFeatureExtractor' class name has been renamed to 'CLIPImageProcessor' in order to comply with future deprecation. This commit includes the necessary changes to the affected files.
-
- 22 Mar, 2023 1 commit
-
-
Patrick von Platen authored
* [MS Text To Video} Add first text to video * upload * make first model example * match unet3d params * make sure weights are correcctly converted * improve * forward pass works, but diff result * make forward work * fix more * finish * refactor video output class. * feat: add support for a video export utility. * fix: opencv availability check. * run make fix-copies. * add: docs for the model components. * add: standalone pipeline doc. * edit docstring of the pipeline. * add: right path to TransformerTempModel * add: first set of tests. * complete fast tests for text to video. * fix bug * up * three fast tests failing. * add: note on slow tests * make work with all schedulers * apply styling. * add slow tests * change file name * update * more correction * more fixes * finish * up * Apply suggestions from code review * up * finish * make copies * fix pipeline tests * fix more tests * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * apply suggestions * up * revert --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 10 Mar, 2023 2 commits
-
-
Will Berman authored
* controlnet sd 2.1 checkpoint conversions * remove global_step -> make config file mandatory
-
Patrick von Platen authored
* [From pretrained] Speed-up loading from cache * up * Fix more * fix one more bug * make style * bigger refactor * factor out function * Improve more * better * deprecate return cache folder * clean up * improve tests * up * upload * add nice tests * simplify * finish * correct * fix version * rename * Apply suggestions from code review Co-authored-by:
Lucain <lucainp@gmail.com> * rename * correct doc string * correct more * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * apply code suggestions * finish --------- Co-authored-by:
Lucain <lucainp@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 06 Mar, 2023 4 commits
-
-
Patrick von Platen authored
-
Haofan Wang authored
* add lora convertor * Update convert_lora_safetensor_to_diffusers.py * Update README.md * Update convert_lora_safetensor_to_diffusers.py
-
Patrick von Platen authored
-
ForserX authored
-
- 02 Mar, 2023 1 commit
-
-
Takuma Mori authored
* add scaffold - copied convert_controlnet_to_diffusers.py from convert_original_stable_diffusion_to_diffusers.py * Add support to load ControlNet (WIP) - this makes Missking Key error on ControlNetModel * Update to convert ControlNet without error msg - init impl for StableDiffusionControlNetPipeline - init impl for ControlNetModel * cleanup of commented out * split create_controlnet_diffusers_config() from create_unet_diffusers_config() - add config: hint_channels * Add input_hint_block, input_zero_conv and middle_block_out - this makes missing key error on loading model * add unet_2d_blocks_controlnet.py - copied from unet_2d_blocks.py as impl CrossAttnDownBlock2D,DownBlock2D - this makes missing key error on loading model * Add loading for input_hint_block, zero_convs and middle_block_out - this makes no error message on model loading * Copy from UNet2DConditionalModel except __init__ * Add ultra primitive test for ControlNetModel inference * Support ControlNetModel inference - without exceptions * copy forward() from UNet2DConditionModel * Impl ControlledUNet2DConditionModel inference - test_controlled_unet_inference passed * Frozen weight & biases for training * Minimized version of ControlNet/ControlledUnet - test_modules_controllnet.py passed * make style * Add support model loading for minimized ver * Remove all previous version files * from_pretrained and inference test passed * copied from pipeline_stable_diffusion.py except `__init__()` * Impl pipeline, pixel match test (almost) passed. * make style * make fix-copies * Fix to add import ControlNet blocks for `make fix-copies` * Remove einops dependency * Support np.ndarray, PIL.Image for controlnet_hint * set default config file as lllyasviel's * Add support grayscale (hw) numpy array * Add and update docstrings * add control_net.mdx * add control_net.mdx to toctree * Update copyright year * Fix to add PIL.Image RGB->BGR conversion - thanks @Mystfit * make fix-copies * add basic fast test for controlnet * add slow test for controlnet/unet * Ignore down/up_block len check on ControlNet * add a copy from test_stable_diffusion.py * Accept controlnet_hint is None * merge pipeline_stable_diffusion.py diff * Update class name to SDControlNetPipeline * make style * Baseline fast test almost passed (w long desc) * still needs investigate. Following didn't passed descriped in TODO comment: - test_stable_diffusion_long_prompt - test_stable_diffusion_no_safety_checker Following didn't passed same as stable_diffusion_pipeline: - test_attention_slicing_forward_pass - test_inference_batch_single_identical - test_xformers_attention_forwardGenerator_pass these seems come from calc accuracy. * Add note comment related vae_scale_factor * add test_stable_diffusion_controlnet_ddim * add assertion for vae_scale_factor != 8 * slow test of pipeline almost passed Failed: test_stable_diffusion_pipeline_with_model_offloading - ImportError: `enable_model_offload` requires `accelerate v0.17.0` or higher but currently latest version == 0.16.0 * test_stable_diffusion_long_prompt passed * test_stable_diffusion_no_safety_checker passed - due to its model size, move to slow test * remove PoC test files * fix num_of_image, prompt length issue add add test * add support List[PIL.Image] for controlnet_hint * wip * all slow test passed * make style * update for slow test * RGB(PIL)->BGR(ctrlnet) conversion * fixes * remove manual num_images_per_prompt test * add document * add `image` argument docstring * make style * Add line to correct conversion * add controlnet_conditioning_scale (aka control_scales strength) * rgb channel ordering by default * image batching logic * Add control image descriptions for each checkpoint * Only save controlnet model in conversion script * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py typo Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * add gerated image example * a depth mask -> a depth map * rename control_net.mdx to controlnet.mdx * fix toc title * add ControlNet abstruct and link * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py Co-authored-by:
dqueue <dbyqin@gmail.com> * remove controlnet constructor arguments re: @patrickvonplaten * [integration tests] test canny * test_canny fixes * [integration tests] test_depth * [integration tests] test_hed * [integration tests] test_mlsd * add channel order config to controlnet * [integration tests] test normal * [integration tests] test_openpose test_scribble * change height and width to default to conditioning image * [integration tests] test seg * style * test_depth fix * [integration tests] size fixes * [integration tests] cpu offloading * style * generalize controlnet embedding * fix conversion script * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Style adapted to the documentation of pix2pix * merge main by hand * style * [docs] controlling generation doc nits * correct some things * add: controlnetmodel to autodoc. * finish docs * finish * finish 2 * correct images * finish controlnet * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * uP * upload model * up * up --------- Co-authored-by:
William Berman <WLBberman@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
dqueue <dbyqin@gmail.com> Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 01 Mar, 2023 1 commit
-
-
Patrick von Platen authored
-
- 14 Feb, 2023 1 commit
-
-
Will Berman authored
* pipeline_variant * Add docs for when clip_stats_path is specified * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * prepare_latents # Copied from re: @patrickvonplaten * NoiseAugmentor->ImageNormalizer * stable_unclip_prior default to None re: @patrickvonplaten * prepare_prior_extra_step_kwargs * prior denoising scale model input * {DDIM,DDPM}Scheduler -> KarrasDiffusionSchedulers re: @patrickvonplaten * docs * Update docs/source/en/api/pipelines/stable_unclip.mdx Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> --------- Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 08 Feb, 2023 1 commit
-
-
Will Berman authored
Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 07 Feb, 2023 4 commits
-
-
Patrick von Platen authored
* before running make style * remove left overs from flake8 * finish * make fix-copies * final fix * more fixes
-
Patrick von Platen authored
-
YiYi Xu authored
* Modify UNet2DConditionModel - allow skipping mid_block - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size` - allow user to set dimension for the timestep embedding (`time_embed_dim`) - the kernel_size for `conv_in` and `conv_out` is now configurable - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj` - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))` - added 2 arguments `attn1_types` and `attn2_types` * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the `BasicTransformerBlock` block with 2 cross-attention , otherwise we get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention; so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block; note that I stil kept the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks - the position of downsample layer and upsample layer is now configurable - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support this use case - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step inside cross attention block add up/down blocks for k-upscaler modify CrossAttention class - make the `dropout` layer in `to_out` optional - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states - `attention_dropout`: add an optional dropout on attention score adapt BasicTransformerBlock - add an ada groupnorm layer to conditioning attention input with timestep embedding - allow skipping the FeedForward layer in between the attentions - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration update timestep embedding: add new act_fn gelu and an optional act_2 modified ResnetBlock2D - refactored with AdaGroupNorm class (the timestep scale shift normalization) - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv - add option to use input AdaGroupNorm on the input instead of groupnorm - add options to add a dropout layer after each conv - allow user to set the bias in conv_shortcut (needed for k-upscaler) - add gelu adding conversion script for k-upscaler unet add pipeline * fix attention mask * fix a typo * fix a bug * make sure model can be used with GPU * make pipeline work with fp16 * fix an error in BasicTransfomerBlock * make style * fix typo * some more fixes * uP * up * correct more * some clean-up * clean time proj * up * uP * more changes * remove the upcast_attention=True from unet config * remove attn1_types, attn2_types etc * fix * revert incorrect changes up/down samplers * make style * remove outdated files * Apply suggestions from code review * attention refactor * refactor cross attention * Apply suggestions from code review * update * up * update * Apply suggestions from code review * finish * Update src/diffusers/models/cross_attention.py * more fixes * up * up * up * finish * more corrections of conversion state * act_2 -> act_2_fn * remove dropout_after_conv from ResnetBlock2D * make style * simplify KAttentionBlock * add fast test for latent upscaler pipeline * add slow test * slow test fp16 * make style * add doc string for pipeline_stable_diffusion_latent_upscale * add api doc page for latent upscaler pipeline * deprecate attention mask * clean up embeddings * simplify resnet * up * clean up resnet * up * correct more * up * up * improve a bit more * correct more * more clean-ups * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * add docstrings for new unet config * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * # Copied from * encode the image if not latent * remove force casting vae to fp32 * fix * add comments about preconditioning parameters from k-diffusion paper * attn1_type, attn2_type -> add_self_attention * clean up get_down_block and get_up_block * fix * fixed a typo(?) in ada group norm * update slice attention processer for cross attention * update slice * fix fast test * update the checkpoint * finish tests * fix-copies * fix-copy for modeling_text_unet.py * make style * make style * fix f-string * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix import * correct changes * fix resnet * make fix-copies * correct euler scheduler * add missing #copied from for preprocess * revert * fix * fix copies * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/models/cross_attention.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * clean up conversion script * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D * more * Update src/diffusers/models/unet_2d_condition.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * remove prepare_extra_step_kwargs * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix a typo in timestep embedding * remove num_image_per_prompt * fix fasttest * make style + fix-copies * fix * fix xformer test * fix style * doc string * make style * fix-copies * docstring for time_embedding_norm * make style * final finishes * make fix-copies * fix tests --------- Co-authored-by:
yiyixuxu <yixu@yis-macbook-pro.lan> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
chavinlo authored
* Create convert_vae_pt_to_diffusers.py Just a simple script to convert VAE.pt files to diffusers format Tested with: https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/VAEs/orangemix.vae.pt * Update convert_vae_pt_to_diffusers.py Forgot to add the function call * make style --------- Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
chavinlo <example@example.com>
-
- 23 Jan, 2023 1 commit
-
-
cafe+ai — かふぇあい authored
* Safetensors loading in "convert_diffusers_to_original_stable_diffusion" Adds diffusers format saftetensors loading support * Fix import sort order: convert_diffusers_to_original_stable_diffusion.py Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 20 Jan, 2023 1 commit
-
-
Damian Stewart authored
* convert __main__ to a function call and call it * add missing type hint * make style check pass * move loading to src/diffusers Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 17 Jan, 2023 1 commit
-
-
Kashif Rasul authored
* added dit model * import * initial pipeline * initial convert script * initial pipeline * make style * raise valueerror * single function * rename classes * use DDIMScheduler * timesteps embedder * samples to cpu * fix var names * fix numpy type * use timesteps class for proj * fix typo * fix arg name * flip_sin_to_cos and better var names * fix C shape cal * make style * remove unused imports * cleanup * add back patch_size * initial dit doc * typo * Update docs/source/api/pipelines/dit.mdx Co-authored-by:
Suraj Patil <surajp815@gmail.com> * added copyright license headers * added example usage and toc * fix variable names asserts * remove comment * added docs * fix typo * upstream changes * set proper device for drop_ids * added initial dit pipeline test * update docs * fix imports * make fix-copies * isort * fix imports * get rid of more magic numbers * fix code when guidance is off * remove block_kwargs * cleanup script * removed to_2tuple * use FeedForward class instead of another MLP * style * work on mergint DiTBlock with BasicTransformerBlock * added missing final_dropout and args to BasicTransformerBlock * use norm from block * fix arg * remove unused arg * fix call to class_embedder * use timesteps * make style * attn_output gets multiplied * removed commented code * use Transformer2D * use self.is_input_patches * fix flags * fixed conversion to use Transformer2DModel * fixes for pipeline * remove dit.py * fix timesteps device * use randn_tensor and fix fp16 inf. * timesteps_emb already the right dtype * fix dit test class * fix test and style * fix norm2 usage in vq-diffusion * added author names to pipeline and lmagenet labels link * fix tests * use norm_type as string * rename dit to transformer * fix name * fix test * set norm_type = "layer" by default * fix tests * do not skip common tests * Update src/diffusers/models/attention.py Co-authored-by:
Suraj Patil <surajp815@gmail.com> * revert AdaLayerNorm API * fix norm_type name * make sure all components are in eval mode * revert norm2 API * compact * finish deprecation * add slow tests * remove @ * refactor some stuff * upload * Update src/diffusers/pipelines/dit/pipeline_dit.py * finish more * finish docs * improve docs * finish docs Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
William Berman <WLBberman@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 16 Jan, 2023 2 commits
-
-
Patrick von Platen authored
-
蓝色的秋风 authored
fix: support diffusers to safetensors
-
- 12 Jan, 2023 1 commit
-
-
Katsuya authored
Fix unused upcast_attn flag in sd to diffusers script
-
- 10 Jan, 2023 1 commit
-
-
Patrick von Platen authored
-
- 06 Jan, 2023 1 commit
-
-
Patrick von Platen authored
* [Conversion] Make sure ema weights are extracted correctly * up * finish
-
- 03 Jan, 2023 2 commits
-
-
Patrick von Platen authored
-
Patrick von Platen authored
* [Deterministic torch randn] Allow tensors to be generated on CPU * fix more * up * fix more * up * Update src/diffusers/utils/torch_utils.py Co-authored-by:
Anton Lozhkov <anton@huggingface.co> * Apply suggestions from code review * up * up * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 30 Dec, 2022 1 commit
-
-
Patrick von Platen authored
* move files a bit * more refactors * fix more * more fixes * fix more onnx * make style * upload * fix * up * fix more * up again * up * small fix * Update src/diffusers/__init__.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * correct Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 28 Dec, 2022 1 commit
-
-
Will Berman authored
* unCLIP image variation * remove prior comment re: @pcuenca * stable diffusion -> unCLIP re: @pcuenca * add copy froms re: @patil-suraj
-
- 27 Dec, 2022 1 commit
-
-
camenduru authored
* Device to use (e.g. cpu, cuda:0, cuda:1, etc.) * "cuda" if torch.cuda.is_available() else "cpu"
-
- 19 Dec, 2022 1 commit
-
-
Mikołaj Siedlarek authored
-
- 18 Dec, 2022 1 commit
-
-
Will Berman authored
* [wip] attention block updates * [wip] unCLIP unet decoder and super res * [wip] unCLIP prior transformer * [wip] scheduler changes * [wip] text proj utility class * [wip] UnCLIPPipeline * [wip] kakaobrain unCLIP convert script * [unCLIP pipeline] fixes re: @patrickvonplaten remove callbacks move denoising loops into call function * UNCLIPScheduler re: @patrickvonplaten Revert changes to DDPMScheduler. Make UNCLIPScheduler, a modified DDPM scheduler with changes to support karlo * mask -> attention_mask re: @patrickvonplaten * [DDPMScheduler] remove leftover change * [docs] PriorTransformer * [docs] UNet2DConditionModel and UNet2DModel * [nit] UNCLIPScheduler -> UnCLIPScheduler matches existing unclip naming better * [docs] SchedulingUnCLIP * [docs] UnCLIPTextProjModel * refactor * finish licenses * rename all to attention_mask and prep in models * more renaming * don't expose unused configs * final renaming fixes * remove x attn mask when not necessary * configure kakao script to use new class embedding config * fix copies * [tests] UnCLIPScheduler * finish x attn * finish * remove more * rename condition blocks * clean more * Apply suggestions from code review * up * fix * [tests] UnCLIPPipelineFastTests * remove unused imports * [tests] UnCLIPPipelineIntegrationTests * correct * make style Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 13 Dec, 2022 1 commit
-
-
apolinario authored
* Fix type checking remainders * Remove IS_V20_MODEL flag always being True Co-authored-by:apolinario <joaopaulo.passos+multimodal@gmail.com>
-
- 12 Dec, 2022 3 commits
-
-
Patrick von Platen authored
-
Cyberes authored
handle missing global_step key and don't download config if it already exists
-
lawfordp2017 authored
* Initial code for attempt at improving SD <--> diffusers conversions for v2.0 * Updates to support round-trip between orig. SD 2.0 and diffusers models * Corrected formatting to Black standard * Correcting import formatting * Fixed imports (properly this time) * add some corrections * remove inference files Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 07 Dec, 2022 1 commit
-
-
Patrick von Platen authored
* add paint by example * mkae loading possibel * up * Update src/diffusers/models/attention.py * up * finalize weight structure * make example work * make it work * up * up * fix * del * add * update * Apply suggestions from code review * correct transformer 2d * finish * up * up * up * up * fix * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Apply suggestions from code review * up * finish Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 05 Dec, 2022 1 commit
-
-
Patrick von Platen authored
-