"git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "18577d026d26786696a40915f31846d96d637416"
Commit fc596c86 authored by Patrick von Platen's avatar Patrick von Platen
Browse files

merge conflict

parents 48269070 c31736a4
import argparse
import os
import torch
import torch.nn.functional as F
import PIL.Image
from accelerate import Accelerator
from datasets import load_dataset
from diffusers import DDPM, DDPMScheduler, UNetLDMModel
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.modeling_utils import unwrap_model
from diffusers.optimization import get_scheduler
from diffusers.utils import logging
from torchvision.transforms import (
CenterCrop,
Compose,
InterpolationMode,
Lambda,
RandomHorizontalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
logger = logging.get_logger(__name__)
def main(args):
accelerator = Accelerator(mixed_precision=args.mixed_precision)
model = UNetLDMModel(
attention_resolutions=[4, 2, 1],
channel_mult=[1, 2, 4, 4],
context_dim=1280,
conv_resample=True,
dims=2,
dropout=0,
image_size=32,
in_channels=4,
model_channels=320,
num_heads=8,
num_res_blocks=2,
out_channels=4,
resblock_updown=False,
transformer_depth=1,
use_new_attention_order=False,
use_scale_shift_norm=False,
use_spatial_transformer=True,
legacy=False,
)
noise_scheduler = DDPMScheduler(timesteps=1000, tensor_format="pt")
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
augmentations = Compose(
[
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
CenterCrop(args.resolution),
RandomHorizontalFlip(),
ToTensor(),
Lambda(lambda x: x * 2 - 1),
]
)
dataset = load_dataset(args.dataset, split="train")
def transforms(examples):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
return {"input": images}
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
)
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
if args.push_to_hub:
repo = init_git_repo(args, at_init=True)
# Train!
is_distributed = torch.distributed.is_available() and torch.distributed.is_initialized()
world_size = torch.distributed.get_world_size() if is_distributed else 1
total_train_batch_size = args.batch_size * args.gradient_accumulation_steps * world_size
max_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_epochs
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataloader.dataset)}")
logger.info(f" Num Epochs = {args.num_epochs}")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_steps}")
for epoch in range(args.num_epochs):
model.train()
with tqdm(total=len(train_dataloader), unit="ba") as pbar:
pbar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["input"]
noise_samples = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_images.device).long()
# add noise onto the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.training_step(clean_images, noise_samples, timesteps)
if step % args.gradient_accumulation_steps != 0:
with accelerator.no_sync(model):
output = model(noisy_images, timesteps)
# predict the noise residual
loss = F.mse_loss(output, noise_samples)
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
else:
output = model(noisy_images, timesteps)
# predict the noise residual
loss = F.mse_loss(output, noise_samples)
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
pbar.update(1)
pbar.set_postfix(loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"])
optimizer.step()
if is_distributed:
torch.distributed.barrier()
# Generate a sample image for visual inspection
if args.local_rank in [-1, 0]:
model.eval()
with torch.no_grad():
pipeline = DDPM(unet=unwrap_model(model), noise_scheduler=noise_scheduler)
generator = torch.manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
image = pipeline(generator=generator)
# process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.type(torch.uint8).numpy()
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
test_dir = os.path.join(args.output_dir, "test_samples")
os.makedirs(test_dir, exist_ok=True)
image_pil.save(f"{test_dir}/{epoch:04d}.png")
# save the model
if args.push_to_hub:
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
else:
pipeline.save_pretrained(args.output_dir)
if is_distributed:
torch.distributed.barrier()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--dataset", type=str, default="huggan/flowers-102-categories")
parser.add_argument("--output_dir", type=str, default="ddpm-model")
parser.add_argument("--overwrite_output_dir", action="store_true")
parser.add_argument("--resolution", type=int, default=64)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--warmup_steps", type=int, default=500)
parser.add_argument("--push_to_hub", action="store_true")
parser.add_argument("--hub_token", type=str, default=None)
parser.add_argument("--hub_model_id", type=str, default=None)
parser.add_argument("--hub_private_repo", action="store_true")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
main(args)
...@@ -694,7 +694,6 @@ class CLIPTextModel(CLIPPreTrainedModel): ...@@ -694,7 +694,6 @@ class CLIPTextModel(CLIPPreTrainedModel):
# END OF THE CLIP MODEL COPY-PASTE # END OF THE CLIP MODEL COPY-PASTE
##################### #####################
def _extract_into_tensor(arr, timesteps, broadcast_shape): def _extract_into_tensor(arr, timesteps, broadcast_shape):
""" """
Extract values from a 1-D numpy array for a batch of indices. Extract values from a 1-D numpy array for a batch of indices.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment