@@ -25,6 +25,8 @@ Original model checkpoints for Flux can be found [here](https://huggingface.co/b
...
@@ -25,6 +25,8 @@ Original model checkpoints for Flux can be found [here](https://huggingface.co/b
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
[Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
[Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.[Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
@@ -20,7 +20,7 @@ Check out the model card [here](https://huggingface.co/Qwen/Qwen-Image) to learn
...
@@ -20,7 +20,7 @@ Check out the model card [here](https://huggingface.co/Qwen/Qwen-Image) to learn
<Tip>
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
[Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.[Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.