Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
f035fbfb
Commit
f035fbfb
authored
Jun 09, 2022
by
Patrick von Platen
Browse files
improve ddim comments
parent
cbb19ee8
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
21 additions
and
21 deletions
+21
-21
models/vision/ddpm/modeling_ddpm.py
models/vision/ddpm/modeling_ddpm.py
+21
-21
No files found.
models/vision/ddpm/modeling_ddpm.py
View file @
f035fbfb
...
...
@@ -30,43 +30,43 @@ class DDPM(DiffusionPipeline):
torch_device
=
"cuda"
if
torch
.
cuda
.
is_available
()
else
"cpu"
self
.
unet
.
to
(
torch_device
)
# 1. Sample gaussian noise
# Sample gaussian noise to begin loop
image
=
self
.
noise_scheduler
.
sample_noise
(
(
batch_size
,
self
.
unet
.
in_channels
,
self
.
unet
.
resolution
,
self
.
unet
.
resolution
),
device
=
torch_device
,
generator
=
generator
,
)
for
t
in
tqdm
.
tqdm
(
reversed
(
range
(
len
(
self
.
noise_scheduler
))),
total
=
len
(
self
.
noise_scheduler
)):
# i) define coefficients for time step t
clipped_image_coeff
=
1
/
torch
.
sqrt
(
self
.
noise_scheduler
.
get_alpha_prod
(
t
))
clipped_noise_coeff
=
torch
.
sqrt
(
1
/
self
.
noise_scheduler
.
get_alpha_prod
(
t
)
-
1
)
image_coeff
=
(
(
1
-
self
.
noise_scheduler
.
get_alpha_prod
(
t
-
1
))
*
torch
.
sqrt
(
self
.
noise_scheduler
.
get_alpha
(
t
))
/
(
1
-
self
.
noise_scheduler
.
get_alpha_prod
(
t
))
)
clipped_coeff
=
(
torch
.
sqrt
(
self
.
noise_scheduler
.
get_alpha_prod
(
t
-
1
))
*
self
.
noise_scheduler
.
get_beta
(
t
)
/
(
1
-
self
.
noise_scheduler
.
get_alpha_prod
(
t
))
)
# ii) predict noise residual
for
t
in
tqdm
.
tqdm
(
reversed
(
range
(
len
(
self
.
noise_scheduler
))),
total
=
len
(
self
.
noise_scheduler
)):
# 1. predict noise residual
with
torch
.
no_grad
():
noise_residual
=
self
.
unet
(
image
,
t
)
# iii) compute predicted image from residual
# 2. compute alphas, betas
alpha_prod_t
=
self
.
noise_scheduler
.
get_alpha_prod
(
t
)
alpha_prod_t_prev
=
self
.
noise_scheduler
.
get_alpha_prod
(
t
-
1
)
beta_prod_t
=
1
-
alpha_prod_t
beta_prod_t_prev
=
1
-
alpha_prod_t_prev
# 3. compute predicted image from residual
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
pred_mean
=
clipped_image_coeff
*
image
-
clipped_noise_coeff
*
noise_residual
# First: Compute inner formula
pred_mean
=
(
1
/
alpha_prod_t
.
sqrt
())
*
(
image
-
beta_prod_t
.
sqrt
()
*
noise_residual
)
# Second: Clip
pred_mean
=
torch
.
clamp
(
pred_mean
,
-
1
,
1
)
prev_image
=
clipped_coeff
*
pred_mean
+
image_coeff
*
image
# Third: Compute outer coefficients
pred_mean_coeff
=
(
alpha_prod_t_prev
.
sqrt
()
*
self
.
noise_scheduler
.
get_beta
(
t
))
/
beta_prod_t
image_coeff
=
(
beta_prod_t_prev
*
self
.
noise_scheduler
.
get_alpha
(
t
).
sqrt
())
/
beta_prod_t
# Fourth: Compute outer formula
prev_image
=
pred_mean_coeff
*
pred_mean
+
image_coeff
*
image
#
iv)
sample variance
#
4.
sample variance
prev_variance
=
self
.
noise_scheduler
.
sample_variance
(
t
,
prev_image
.
shape
,
device
=
torch_device
,
generator
=
generator
)
#
v)
sample x_{t-1} ~ N(prev_image, prev_variance)
#
5.
sample x_{t-1} ~ N(prev_image, prev_variance)
= add variance to predicted image
sampled_prev_image
=
prev_image
+
prev_variance
image
=
sampled_prev_image
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment