Unverified Commit e68092a4 authored by Sayak Paul's avatar Sayak Paul Committed by GitHub
Browse files

[docs] minor stuff to ltx video docs. (#10229)

minor stuff to ltx video docs.
parent 3bf5400a
...@@ -31,14 +31,18 @@ import torch ...@@ -31,14 +31,18 @@ import torch
from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors" single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
transformer = LTXVideoTransformer3DModel.from_single_file(single_file_url, torch_dtype=torch.bfloat16) transformer = LTXVideoTransformer3DModel.from_single_file(
single_file_url, torch_dtype=torch.bfloat16
)
vae = AutoencoderKLLTXVideo.from_single_file(single_file_url, torch_dtype=torch.bfloat16) vae = AutoencoderKLLTXVideo.from_single_file(single_file_url, torch_dtype=torch.bfloat16)
pipe = LTXImageToVideoPipeline.from_pretrained("Lightricks/LTX-Video", transformer=transformer, vae=vae, torch_dtype=torch.bfloat16) pipe = LTXImageToVideoPipeline.from_pretrained(
"Lightricks/LTX-Video", transformer=transformer, vae=vae, torch_dtype=torch.bfloat16
)
# ... inference code ... # ... inference code ...
``` ```
Alternatively, the pipeline can be used to load the weights with [~FromSingleFileMixin.from_single_file`]. Alternatively, the pipeline can be used to load the weights with [`~FromSingleFileMixin.from_single_file`].
```python ```python
import torch import torch
...@@ -46,11 +50,19 @@ from diffusers import LTXImageToVideoPipeline ...@@ -46,11 +50,19 @@ from diffusers import LTXImageToVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer from transformers import T5EncoderModel, T5Tokenizer
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors" single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
text_encoder = T5EncoderModel.from_pretrained("Lightricks/LTX-Video", subfolder="text_encoder", torch_dtype=torch.bfloat16) text_encoder = T5EncoderModel.from_pretrained(
tokenizer = T5Tokenizer.from_pretrained("Lightricks/LTX-Video", subfolder="tokenizer", torch_dtype=torch.bfloat16) "Lightricks/LTX-Video", subfolder="text_encoder", torch_dtype=torch.bfloat16
pipe = LTXImageToVideoPipeline.from_single_file(single_file_url, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=torch.bfloat16) )
tokenizer = T5Tokenizer.from_pretrained(
"Lightricks/LTX-Video", subfolder="tokenizer", torch_dtype=torch.bfloat16
)
pipe = LTXImageToVideoPipeline.from_single_file(
single_file_url, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=torch.bfloat16
)
``` ```
Refer to [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox#memory-optimization) to learn more about optimizing memory consumption.
## LTXPipeline ## LTXPipeline
[[autodoc]] LTXPipeline [[autodoc]] LTXPipeline
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment