Unverified Commit e5b94b4c authored by Aryan's avatar Aryan Committed by GitHub
Browse files

[core] Move community AnimateDiff ControlNet to core (#8972)



* add animatediff controlnet to core

* make style; remove unused method

* fix copied from comment

* add tests

* changes to make tests work

* add utility function to load videos

* update docs

* update pipeline example

* make style

* update docs with example

* address review comments

* add latest freeinit test from #8969

* LoraLoaderMixin -> StableDiffusionLoraLoaderMixin

* fix docs

* Update src/diffusers/utils/loading_utils.py
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>

* fix: variable out of scope

---------
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
parent 69e72b1d
...@@ -25,6 +25,9 @@ The abstract of the paper is the following: ...@@ -25,6 +25,9 @@ The abstract of the paper is the following:
| Pipeline | Tasks | Demo | Pipeline | Tasks | Demo
|---|---|:---:| |---|---|:---:|
| [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* | | [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* |
| [AnimateDiffControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py) | *Controlled Video-to-Video Generation with AnimateDiff using ControlNet* |
| [AnimateDiffSparseControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py) | *Controlled Video-to-Video Generation with AnimateDiff using SparseCtrl* |
| [AnimateDiffSDXLPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py) | *Video-to-Video Generation with AnimateDiff* |
| [AnimateDiffVideoToVideoPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py) | *Video-to-Video Generation with AnimateDiff* | | [AnimateDiffVideoToVideoPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py) | *Video-to-Video Generation with AnimateDiff* |
## Available checkpoints ## Available checkpoints
...@@ -100,6 +103,83 @@ AnimateDiff tends to work better with finetuned Stable Diffusion models. If you ...@@ -100,6 +103,83 @@ AnimateDiff tends to work better with finetuned Stable Diffusion models. If you
</Tip> </Tip>
### AnimateDiffControlNetPipeline
AnimateDiff can also be used with ControlNets ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide depth maps, the ControlNet model generates a video that'll preserve the spatial information from the depth maps. It is a more flexible and accurate way to control the video generation process.
```python
import torch
from diffusers import AnimateDiffControlNetPipeline, AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler
from diffusers.utils import export_to_gif, load_video
# Additionally, you will need a preprocess videos before they can be used with the ControlNet
# HF maintains just the right package for it: `pip install controlnet_aux`
from controlnet_aux.processor import ZoeDetector
# Download controlnets from https://huggingface.co/lllyasviel/ControlNet-v1-1 to use .from_single_file
# Download Diffusers-format controlnets, such as https://huggingface.co/lllyasviel/sd-controlnet-depth, to use .from_pretrained()
controlnet = ControlNetModel.from_single_file("control_v11f1p_sd15_depth.pth", torch_dtype=torch.float16)
# We use AnimateLCM for this example but one can use the original motion adapters as well (for example, https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3)
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe: AnimateDiffControlNetPipeline = AnimateDiffControlNetPipeline.from_pretrained(
"SG161222/Realistic_Vision_V5.1_noVAE",
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
).to(device="cuda", dtype=torch.float16)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora")
pipe.set_adapters(["lcm-lora"], [0.8])
depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif")
conditioning_frames = []
with pipe.progress_bar(total=len(video)) as progress_bar:
for frame in video:
conditioning_frames.append(depth_detector(frame))
progress_bar.update()
prompt = "a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality"
negative_prompt = "bad quality, worst quality"
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=len(video),
num_inference_steps=10,
guidance_scale=2.0,
conditioning_frames=conditioning_frames,
generator=torch.Generator().manual_seed(42),
).frames[0]
export_to_gif(video, "animatediff_controlnet.gif", fps=8)
```
Here are some sample outputs:
<table align="center">
<tr>
<th align="center">Source Video</th>
<th align="center">Output Video</th>
</tr>
<tr>
<td align="center">
raccoon playing a guitar
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif" alt="racoon playing a guitar" />
</td>
<td align="center">
a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-controlnet-output.gif" alt="a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality" />
</td>
</tr>
</table>
### AnimateDiffSparseControlNetPipeline ### AnimateDiffSparseControlNetPipeline
[SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai. [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
...@@ -762,6 +842,12 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt ...@@ -762,6 +842,12 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt
- all - all
- __call__ - __call__
## AnimateDiffControlNetPipeline
[[autodoc]] AnimateDiffControlNetPipeline
- all
- __call__
## AnimateDiffSparseControlNetPipeline ## AnimateDiffSparseControlNetPipeline
[[autodoc]] AnimateDiffSparseControlNetPipeline [[autodoc]] AnimateDiffSparseControlNetPipeline
......
...@@ -232,6 +232,7 @@ else: ...@@ -232,6 +232,7 @@ else:
"AmusedImg2ImgPipeline", "AmusedImg2ImgPipeline",
"AmusedInpaintPipeline", "AmusedInpaintPipeline",
"AmusedPipeline", "AmusedPipeline",
"AnimateDiffControlNetPipeline",
"AnimateDiffPipeline", "AnimateDiffPipeline",
"AnimateDiffSDXLPipeline", "AnimateDiffSDXLPipeline",
"AnimateDiffSparseControlNetPipeline", "AnimateDiffSparseControlNetPipeline",
...@@ -652,6 +653,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -652,6 +653,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AmusedImg2ImgPipeline, AmusedImg2ImgPipeline,
AmusedInpaintPipeline, AmusedInpaintPipeline,
AmusedPipeline, AmusedPipeline,
AnimateDiffControlNetPipeline,
AnimateDiffPipeline, AnimateDiffPipeline,
AnimateDiffSDXLPipeline, AnimateDiffSDXLPipeline,
AnimateDiffSparseControlNetPipeline, AnimateDiffSparseControlNetPipeline,
......
...@@ -118,6 +118,7 @@ else: ...@@ -118,6 +118,7 @@ else:
_import_structure["amused"] = ["AmusedImg2ImgPipeline", "AmusedInpaintPipeline", "AmusedPipeline"] _import_structure["amused"] = ["AmusedImg2ImgPipeline", "AmusedInpaintPipeline", "AmusedPipeline"]
_import_structure["animatediff"] = [ _import_structure["animatediff"] = [
"AnimateDiffPipeline", "AnimateDiffPipeline",
"AnimateDiffControlNetPipeline",
"AnimateDiffSDXLPipeline", "AnimateDiffSDXLPipeline",
"AnimateDiffSparseControlNetPipeline", "AnimateDiffSparseControlNetPipeline",
"AnimateDiffVideoToVideoPipeline", "AnimateDiffVideoToVideoPipeline",
...@@ -419,6 +420,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -419,6 +420,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
else: else:
from .amused import AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline from .amused import AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline
from .animatediff import ( from .animatediff import (
AnimateDiffControlNetPipeline,
AnimateDiffPipeline, AnimateDiffPipeline,
AnimateDiffSDXLPipeline, AnimateDiffSDXLPipeline,
AnimateDiffSparseControlNetPipeline, AnimateDiffSparseControlNetPipeline,
......
...@@ -22,6 +22,7 @@ except OptionalDependencyNotAvailable: ...@@ -22,6 +22,7 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else: else:
_import_structure["pipeline_animatediff"] = ["AnimateDiffPipeline"] _import_structure["pipeline_animatediff"] = ["AnimateDiffPipeline"]
_import_structure["pipeline_animatediff_controlnet"] = ["AnimateDiffControlNetPipeline"]
_import_structure["pipeline_animatediff_sdxl"] = ["AnimateDiffSDXLPipeline"] _import_structure["pipeline_animatediff_sdxl"] = ["AnimateDiffSDXLPipeline"]
_import_structure["pipeline_animatediff_sparsectrl"] = ["AnimateDiffSparseControlNetPipeline"] _import_structure["pipeline_animatediff_sparsectrl"] = ["AnimateDiffSparseControlNetPipeline"]
_import_structure["pipeline_animatediff_video2video"] = ["AnimateDiffVideoToVideoPipeline"] _import_structure["pipeline_animatediff_video2video"] = ["AnimateDiffVideoToVideoPipeline"]
...@@ -35,6 +36,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -35,6 +36,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
else: else:
from .pipeline_animatediff import AnimateDiffPipeline from .pipeline_animatediff import AnimateDiffPipeline
from .pipeline_animatediff_controlnet import AnimateDiffControlNetPipeline
from .pipeline_animatediff_sdxl import AnimateDiffSDXLPipeline from .pipeline_animatediff_sdxl import AnimateDiffSDXLPipeline
from .pipeline_animatediff_sparsectrl import AnimateDiffSparseControlNetPipeline from .pipeline_animatediff_sparsectrl import AnimateDiffSparseControlNetPipeline
from .pipeline_animatediff_video2video import AnimateDiffVideoToVideoPipeline from .pipeline_animatediff_video2video import AnimateDiffVideoToVideoPipeline
......
...@@ -93,7 +93,7 @@ from .import_utils import ( ...@@ -93,7 +93,7 @@ from .import_utils import (
is_xformers_available, is_xformers_available,
requires_backends, requires_backends,
) )
from .loading_utils import load_image from .loading_utils import load_image, load_video
from .logging import get_logger from .logging import get_logger
from .outputs import BaseOutput from .outputs import BaseOutput
from .peft_utils import ( from .peft_utils import (
......
...@@ -77,6 +77,21 @@ class AmusedPipeline(metaclass=DummyObject): ...@@ -77,6 +77,21 @@ class AmusedPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"]) requires_backends(cls, ["torch", "transformers"])
class AnimateDiffControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class AnimateDiffPipeline(metaclass=DummyObject): class AnimateDiffPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"] _backends = ["torch", "transformers"]
......
...@@ -9,10 +9,7 @@ import numpy as np ...@@ -9,10 +9,7 @@ import numpy as np
import PIL.Image import PIL.Image
import PIL.ImageOps import PIL.ImageOps
from .import_utils import ( from .import_utils import BACKENDS_MAPPING, is_opencv_available
BACKENDS_MAPPING,
is_opencv_available,
)
from .logging import get_logger from .logging import get_logger
......
import os import os
from typing import Callable, Union import tempfile
from typing import Callable, List, Optional, Union
import PIL.Image import PIL.Image
import PIL.ImageOps import PIL.ImageOps
import requests import requests
from .import_utils import BACKENDS_MAPPING, is_opencv_available
def load_image( def load_image(
image: Union[str, PIL.Image.Image], convert_method: Callable[[PIL.Image.Image], PIL.Image.Image] = None image: Union[str, PIL.Image.Image], convert_method: Optional[Callable[[PIL.Image.Image], PIL.Image.Image]] = None
) -> PIL.Image.Image: ) -> PIL.Image.Image:
""" """
Loads `image` to a PIL Image. Loads `image` to a PIL Image.
...@@ -15,7 +18,7 @@ def load_image( ...@@ -15,7 +18,7 @@ def load_image(
Args: Args:
image (`str` or `PIL.Image.Image`): image (`str` or `PIL.Image.Image`):
The image to convert to the PIL Image format. The image to convert to the PIL Image format.
convert_method (Callable[[PIL.Image.Image], PIL.Image.Image], optional): convert_method (Callable[[PIL.Image.Image], PIL.Image.Image], *optional*):
A conversion method to apply to the image after loading it. When set to `None` the image will be converted A conversion method to apply to the image after loading it. When set to `None` the image will be converted
"RGB". "RGB".
...@@ -47,3 +50,73 @@ def load_image( ...@@ -47,3 +50,73 @@ def load_image(
image = image.convert("RGB") image = image.convert("RGB")
return image return image
def load_video(
video: str,
convert_method: Optional[Callable[[List[PIL.Image.Image]], List[PIL.Image.Image]]] = None,
) -> List[PIL.Image.Image]:
"""
Loads `video` to a list of PIL Image.
Args:
video (`str`):
A URL or Path to a video to convert to a list of PIL Image format.
convert_method (Callable[[List[PIL.Image.Image]], List[PIL.Image.Image]], *optional*):
A conversion method to apply to the video after loading it. When set to `None` the images will be converted
to "RGB".
Returns:
`List[PIL.Image.Image]`:
The video as a list of PIL images.
"""
is_url = video.startswith("http://") or video.startswith("https://")
is_file = os.path.isfile(video)
was_tempfile_created = False
if not (is_url or is_file):
raise ValueError(
f"Incorrect path or URL. URLs must start with `http://` or `https://`, and {video} is not a valid path."
)
if is_url:
video_data = requests.get(video, stream=True).raw
video_path = tempfile.NamedTemporaryFile(suffix=os.path.splitext(video)[1], delete=False).name
was_tempfile_created = True
with open(video_path, "wb") as f:
f.write(video_data.read())
video = video_path
pil_images = []
if video.endswith(".gif"):
gif = PIL.Image.open(video)
try:
while True:
pil_images.append(gif.copy())
gif.seek(gif.tell() + 1)
except EOFError:
pass
else:
if is_opencv_available():
import cv2
else:
raise ImportError(BACKENDS_MAPPING["opencv"][1].format("load_video"))
video_capture = cv2.VideoCapture(video)
success, frame = video_capture.read()
while success:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_images.append(PIL.Image.fromarray(frame))
success, frame = video_capture.read()
video_capture.release()
if was_tempfile_created:
os.remove(video_path)
if convert_method is not None:
pil_images = convert_method(pil_images)
return pil_images
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AnimateDiffControlNetPipeline,
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
DPMSolverMultistepScheduler,
LCMScheduler,
MotionAdapter,
StableDiffusionPipeline,
UNet2DConditionModel,
UNetMotionModel,
)
from diffusers.utils import logging
from diffusers.utils.testing_utils import torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
IPAdapterTesterMixin,
PipelineFromPipeTesterMixin,
PipelineTesterMixin,
SDFunctionTesterMixin,
)
def to_np(tensor):
if isinstance(tensor, torch.Tensor):
tensor = tensor.detach().cpu().numpy()
return tensor
class AnimateDiffControlNetPipelineFastTests(
IPAdapterTesterMixin, SDFunctionTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase
):
pipeline_class = AnimateDiffControlNetPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"conditioning_frames"})
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
def get_dummy_components(self):
cross_attention_dim = 8
block_out_channels = (8, 8)
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=block_out_channels,
layers_per_block=2,
sample_size=8,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=cross_attention_dim,
norm_num_groups=2,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="linear",
clip_sample=False,
)
torch.manual_seed(0)
controlnet = ControlNetModel(
block_out_channels=block_out_channels,
layers_per_block=2,
in_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
cross_attention_dim=cross_attention_dim,
conditioning_embedding_out_channels=(8, 8),
norm_num_groups=1,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=block_out_channels,
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
norm_num_groups=2,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=cross_attention_dim,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
motion_adapter = MotionAdapter(
block_out_channels=block_out_channels,
motion_layers_per_block=2,
motion_norm_num_groups=2,
motion_num_attention_heads=4,
)
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"motion_adapter": motion_adapter,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"feature_extractor": None,
"image_encoder": None,
}
return components
def get_dummy_inputs(self, device, seed: int = 0, num_frames: int = 2):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
video_height = 32
video_width = 32
conditioning_frames = [Image.new("RGB", (video_width, video_height))] * num_frames
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"conditioning_frames": conditioning_frames,
"generator": generator,
"num_inference_steps": 2,
"num_frames": num_frames,
"guidance_scale": 7.5,
"output_type": "pt",
}
return inputs
def test_from_pipe_consistent_config(self):
assert self.original_pipeline_class == StableDiffusionPipeline
original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe"
original_kwargs = {"requires_safety_checker": False}
# create original_pipeline_class(sd)
pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)
# original_pipeline_class(sd) -> pipeline_class
pipe_components = self.get_dummy_components()
pipe_additional_components = {}
for name, component in pipe_components.items():
if name not in pipe_original.components:
pipe_additional_components[name] = component
pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)
# pipeline_class -> original_pipeline_class(sd)
original_pipe_additional_components = {}
for name, component in pipe_original.components.items():
if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
original_pipe_additional_components[name] = component
pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)
# compare the config
original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
assert original_config_2 == original_config
def test_motion_unet_loading(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
assert isinstance(pipe.unet, UNetMotionModel)
@unittest.skip("Attention slicing is not enabled in this pipeline")
def test_attention_slicing_forward_pass(self):
pass
def test_ip_adapter_single(self):
expected_pipe_slice = None
if torch_device == "cpu":
expected_pipe_slice = np.array(
[
0.6604,
0.4099,
0.4928,
0.5706,
0.5096,
0.5012,
0.6051,
0.5169,
0.5021,
0.4864,
0.4261,
0.5779,
0.5822,
0.4049,
0.5253,
0.6160,
0.4150,
0.5155,
]
)
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)
def test_dict_tuple_outputs_equivalent(self):
expected_slice = None
if torch_device == "cpu":
expected_slice = np.array([0.6051, 0.5169, 0.5021, 0.6160, 0.4150, 0.5155])
return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice)
def test_inference_batch_single_identical(
self,
batch_size=2,
expected_max_diff=1e-4,
additional_params_copy_to_batched_inputs=["num_inference_steps"],
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for components in pipe.components.values():
if hasattr(components, "set_default_attn_processor"):
components.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is has been used in self.get_dummy_inputs
inputs["generator"] = self.get_generator(0)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
batched_inputs = {}
batched_inputs.update(inputs)
for name in self.batch_params:
if name not in inputs:
continue
value = inputs[name]
if name == "prompt":
len_prompt = len(value)
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
batched_inputs[name][-1] = 100 * "very long"
else:
batched_inputs[name] = batch_size * [value]
if "generator" in inputs:
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
if "batch_size" in inputs:
batched_inputs["batch_size"] = batch_size
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
output = pipe(**inputs)
output_batch = pipe(**batched_inputs)
assert output_batch[0].shape[0] == batch_size
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
assert max_diff < expected_max_diff
@unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
def test_to_device(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to("cpu")
# pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components
model_devices = [
component.device.type for component in pipe.components.values() if hasattr(component, "device")
]
self.assertTrue(all(device == "cpu" for device in model_devices))
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
self.assertTrue(np.isnan(output_cpu).sum() == 0)
pipe.to("cuda")
model_devices = [
component.device.type for component in pipe.components.values() if hasattr(component, "device")
]
self.assertTrue(all(device == "cuda" for device in model_devices))
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
def test_to_dtype(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
# pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))
pipe.to(dtype=torch.float16)
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))
def test_prompt_embeds(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
inputs.pop("prompt")
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
pipe(**inputs)
def test_free_init(self):
components = self.get_dummy_components()
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
inputs_normal = self.get_dummy_inputs(torch_device)
frames_normal = pipe(**inputs_normal).frames[0]
pipe.enable_free_init(
num_iters=2,
use_fast_sampling=True,
method="butterworth",
order=4,
spatial_stop_frequency=0.25,
temporal_stop_frequency=0.25,
)
inputs_enable_free_init = self.get_dummy_inputs(torch_device)
frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0]
pipe.disable_free_init()
inputs_disable_free_init = self.get_dummy_inputs(torch_device)
frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0]
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max()
self.assertGreater(
sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results"
)
self.assertLess(
max_diff_disabled,
1e-4,
"Disabling of FreeInit should lead to results similar to the default pipeline results",
)
def test_free_init_with_schedulers(self):
components = self.get_dummy_components()
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
inputs_normal = self.get_dummy_inputs(torch_device)
frames_normal = pipe(**inputs_normal).frames[0]
schedulers_to_test = [
DPMSolverMultistepScheduler.from_config(
components["scheduler"].config,
timestep_spacing="linspace",
beta_schedule="linear",
algorithm_type="dpmsolver++",
steps_offset=1,
clip_sample=False,
),
LCMScheduler.from_config(
components["scheduler"].config,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
clip_sample=False,
),
]
components.pop("scheduler")
for scheduler in schedulers_to_test:
components["scheduler"] = scheduler
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
pipe.enable_free_init(num_iters=2, use_fast_sampling=False)
inputs = self.get_dummy_inputs(torch_device)
frames_enable_free_init = pipe(**inputs).frames[0]
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
self.assertGreater(
sum_enabled,
1e1,
"Enabling of FreeInit should lead to results different from the default pipeline results",
)
def test_vae_slicing(self, video_count=2):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * video_count
inputs["conditioning_frames"] = [inputs["conditioning_frames"]] * video_count
output_1 = pipe(**inputs)
# make sure sliced vae decode yields the same result
pipe.enable_vae_slicing()
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * video_count
inputs["conditioning_frames"] = [inputs["conditioning_frames"]] * video_count
output_2 = pipe(**inputs)
assert np.abs(output_2[0].flatten() - output_1[0].flatten()).max() < 1e-2
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment