Unverified Commit df2bc5ef authored by Sai-Suraj-27's avatar Sai-Suraj-27 Committed by GitHub
Browse files

fix: Fixed few `docstrings` according to the Google Style Guide (#7717)

Fixed few docstrings according to the Google Style Guide.
parent a7bf77fc
......@@ -981,7 +981,7 @@ def collate_fn(examples, with_prior_preservation=False):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -1136,7 +1136,7 @@ def collate_fn(examples, with_prior_preservation=False):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -78,7 +78,7 @@ def torch_dfs(model: torch.nn.Module):
class StableDiffusionReferencePipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
):
r""" "
r"""
Pipeline for Stable Diffusion Reference.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
......
......@@ -152,7 +152,7 @@ def collate_fn(examples, with_prior_preservation):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -742,7 +742,7 @@ def collate_fn(examples, with_prior_preservation=False):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -301,7 +301,7 @@ class DreamBoothDataset(Dataset):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -680,7 +680,7 @@ def collate_fn(examples, with_prior_preservation=False):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -903,7 +903,7 @@ def collate_fn(examples, with_prior_preservation=False):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -327,7 +327,7 @@ class DreamBoothDataset(Dataset):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -385,7 +385,7 @@ class DreamBoothDataset(Dataset):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -384,7 +384,7 @@ class DreamBoothDataset(Dataset):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -762,7 +762,7 @@ def collate_fn(examples, with_prior_preservation=False):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -700,7 +700,7 @@ def collate_fn(examples, with_prior_preservation=False):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -922,7 +922,7 @@ def collate_fn(examples, with_prior_preservation=False):
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs."""
def __init__(self, prompt, num_samples):
self.prompt = prompt
......
......@@ -13,7 +13,7 @@ class AnimateDiffPipelineOutput(BaseOutput):
r"""
Output class for AnimateDiff pipelines.
Args:
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised
......
......@@ -76,7 +76,7 @@ class I2VGenXLPipelineOutput(BaseOutput):
r"""
Output class for image-to-video pipeline.
Args:
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised
......
......@@ -1216,7 +1216,7 @@ class LEditsPPPipelineStableDiffusion(
Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the
inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead.
Args:
Args:
image (`PipelineImageInput`):
Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
ratio.
......
......@@ -1449,7 +1449,7 @@ class LEditsPPPipelineStableDiffusionXL(
Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the
inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead.
Args:
Args:
image (`PipelineImageInput`):
Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
ratio.
......
......@@ -844,7 +844,7 @@ class ShapERenderer(ModelMixin, ConfigMixin):
transmittance(t[i + 1]) := transmittance(t[i]). 4) The last term is integration to infinity (e.g. [t[-1],
math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty).
args:
Args:
rays: [batch_size x ... x 2 x 3] origin and direction. sampler: disjoint volume integrals. n_samples:
number of ts to sample. prev_model_outputs: model outputs from the previous rendering step, including
......
......@@ -15,7 +15,7 @@ class TextToVideoSDPipelineOutput(BaseOutput):
"""
Output class for text-to-video pipelines.
Args:
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment