Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
dcb9070b
Commit
dcb9070b
authored
Jul 01, 2022
by
Patrick von Platen
Browse files
quick fix to include non-fir kernels for sde-vp
parent
11667d08
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
100 deletions
+18
-100
src/diffusers/models/resnet.py
src/diffusers/models/resnet.py
+16
-98
src/diffusers/models/unet_sde_score_estimation.py
src/diffusers/models/unet_sde_score_estimation.py
+2
-2
No files found.
src/diffusers/models/resnet.py
View file @
dcb9070b
...
@@ -237,24 +237,23 @@ class ResnetBlock(nn.Module):
...
@@ -237,24 +237,23 @@ class ResnetBlock(nn.Module):
elif
non_linearity
==
"silu"
:
elif
non_linearity
==
"silu"
:
self
.
nonlinearity
=
nn
.
SiLU
()
self
.
nonlinearity
=
nn
.
SiLU
()
# if up:
# self.h_upd = Upsample(in_channels, use_conv=False, dims=2)
# self.x_upd = Upsample(in_channels, use_conv=False, dims=2)
# elif down:
# self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
# self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
self
.
upsample
=
self
.
downsample
=
None
self
.
upsample
=
self
.
downsample
=
None
if
self
.
up
and
kernel
==
"fir"
:
if
self
.
up
:
fir_kernel
=
(
1
,
3
,
3
,
1
)
if
kernel
==
"fir"
:
self
.
upsample
=
lambda
x
:
upsample_2d
(
x
,
k
=
fir_kernel
)
fir_kernel
=
(
1
,
3
,
3
,
1
)
elif
self
.
up
and
kernel
is
None
:
self
.
upsample
=
lambda
x
:
upsample_2d
(
x
,
k
=
fir_kernel
)
self
.
upsample
=
Upsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
)
elif
kernel
==
"sde_vp"
:
elif
self
.
down
and
kernel
==
"fir"
:
self
.
upsample
=
partial
(
F
.
interpolate
,
scale_factor
=
2.0
,
mode
=
"nearest"
)
fir_kernel
=
(
1
,
3
,
3
,
1
)
else
:
self
.
downsample
=
lambda
x
:
downsample_2d
(
x
,
k
=
fir_kernel
)
self
.
upsample
=
Upsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
)
elif
self
.
down
and
kernel
is
None
:
elif
self
.
down
:
self
.
downsample
=
Downsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
,
padding
=
1
,
name
=
"op"
)
if
kernel
==
"fir"
:
fir_kernel
=
(
1
,
3
,
3
,
1
)
self
.
downsample
=
lambda
x
:
downsample_2d
(
x
,
k
=
fir_kernel
)
elif
kernel
==
"sde_vp"
:
self
.
downsample
=
partial
(
F
.
avg_pool2d
,
kernel_size
=
2
,
stride
=
2
)
else
:
self
.
downsample
=
Downsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
,
padding
=
1
,
name
=
"op"
)
self
.
use_nin_shortcut
=
self
.
in_channels
!=
self
.
out_channels
if
use_nin_shortcut
is
None
else
use_nin_shortcut
self
.
use_nin_shortcut
=
self
.
in_channels
!=
self
.
out_channels
if
use_nin_shortcut
is
None
else
use_nin_shortcut
...
@@ -473,87 +472,6 @@ class Block(torch.nn.Module):
...
@@ -473,87 +472,6 @@ class Block(torch.nn.Module):
)
)
# unet_score_estimation.py
class
ResnetBlockBigGANpp
(
nn
.
Module
):
def
__init__
(
self
,
act
,
in_ch
,
out_ch
=
None
,
temb_dim
=
None
,
up
=
False
,
down
=
False
,
dropout
=
0.1
,
fir
=
False
,
fir_kernel
=
(
1
,
3
,
3
,
1
),
skip_rescale
=
True
,
init_scale
=
0.0
,
):
super
().
__init__
()
out_ch
=
out_ch
if
out_ch
else
in_ch
self
.
GroupNorm_0
=
nn
.
GroupNorm
(
num_groups
=
min
(
in_ch
//
4
,
32
),
num_channels
=
in_ch
,
eps
=
1e-6
)
self
.
up
=
up
self
.
down
=
down
self
.
fir
=
fir
self
.
fir_kernel
=
fir_kernel
if
self
.
up
:
if
self
.
fir
:
self
.
upsample
=
partial
(
upsample_2d
,
k
=
self
.
fir_kernel
,
factor
=
2
)
else
:
self
.
upsample
=
partial
(
F
.
interpolate
,
scale_factor
=
2.0
,
mode
=
"nearest"
)
elif
self
.
down
:
if
self
.
fir
:
self
.
downsample
=
partial
(
downsample_2d
,
k
=
self
.
fir_kernel
,
factor
=
2
)
else
:
self
.
downsample
=
partial
(
F
.
avg_pool2d
,
kernel_size
=
2
,
stride
=
2
)
self
.
Conv_0
=
conv2d
(
in_ch
,
out_ch
,
kernel_size
=
3
,
padding
=
1
)
if
temb_dim
is
not
None
:
self
.
Dense_0
=
nn
.
Linear
(
temb_dim
,
out_ch
)
self
.
Dense_0
.
weight
.
data
=
variance_scaling
()(
self
.
Dense_0
.
weight
.
shape
)
nn
.
init
.
zeros_
(
self
.
Dense_0
.
bias
)
self
.
GroupNorm_1
=
nn
.
GroupNorm
(
num_groups
=
min
(
out_ch
//
4
,
32
),
num_channels
=
out_ch
,
eps
=
1e-6
)
self
.
Dropout_0
=
nn
.
Dropout
(
dropout
)
self
.
Conv_1
=
conv2d
(
out_ch
,
out_ch
,
init_scale
=
init_scale
,
kernel_size
=
3
,
padding
=
1
)
if
in_ch
!=
out_ch
or
up
or
down
:
# 1x1 convolution with DDPM initialization.
self
.
Conv_2
=
conv2d
(
in_ch
,
out_ch
,
kernel_size
=
1
,
padding
=
0
)
self
.
skip_rescale
=
skip_rescale
self
.
act
=
act
self
.
in_ch
=
in_ch
self
.
out_ch
=
out_ch
def
forward
(
self
,
x
,
temb
=
None
):
h
=
self
.
act
(
self
.
GroupNorm_0
(
x
))
if
self
.
up
:
h
=
self
.
upsample
(
h
)
x
=
self
.
upsample
(
x
)
elif
self
.
down
:
h
=
self
.
downsample
(
h
)
x
=
self
.
downsample
(
x
)
h
=
self
.
Conv_0
(
h
)
# Add bias to each feature map conditioned on the time embedding
if
temb
is
not
None
:
h
+=
self
.
Dense_0
(
self
.
act
(
temb
))[:,
:,
None
,
None
]
h
=
self
.
act
(
self
.
GroupNorm_1
(
h
))
h
=
self
.
Dropout_0
(
h
)
h
=
self
.
Conv_1
(
h
)
if
self
.
in_ch
!=
self
.
out_ch
or
self
.
up
or
self
.
down
:
x
=
self
.
Conv_2
(
x
)
if
not
self
.
skip_rescale
:
return
x
+
h
else
:
return
(
x
+
h
)
/
np
.
sqrt
(
2.0
)
# unet_rl.py
# unet_rl.py
class
ResidualTemporalBlock
(
nn
.
Module
):
class
ResidualTemporalBlock
(
nn
.
Module
):
def
__init__
(
self
,
inp_channels
,
out_channels
,
embed_dim
,
horizon
,
kernel_size
=
5
):
def
__init__
(
self
,
inp_channels
,
out_channels
,
embed_dim
,
horizon
,
kernel_size
=
5
):
...
...
src/diffusers/models/unet_sde_score_estimation.py
View file @
dcb9070b
...
@@ -373,7 +373,7 @@ class NCSNpp(ModelMixin, ConfigMixin):
...
@@ -373,7 +373,7 @@ class NCSNpp(ModelMixin, ConfigMixin):
groups_out
=
min
(
out_ch
//
4
,
32
),
groups_out
=
min
(
out_ch
//
4
,
32
),
overwrite_for_score_vde
=
True
,
overwrite_for_score_vde
=
True
,
down
=
True
,
down
=
True
,
kernel
=
"fir"
,
# TODO(Patrick) - it seems like both fir and non-fir kernels are fine
kernel
=
"fir"
if
self
.
fir
else
"sde_vp"
,
use_nin_shortcut
=
True
,
use_nin_shortcut
=
True
,
)
)
)
)
...
@@ -473,7 +473,7 @@ class NCSNpp(ModelMixin, ConfigMixin):
...
@@ -473,7 +473,7 @@ class NCSNpp(ModelMixin, ConfigMixin):
groups_out
=
min
(
out_ch
//
4
,
32
),
groups_out
=
min
(
out_ch
//
4
,
32
),
overwrite_for_score_vde
=
True
,
overwrite_for_score_vde
=
True
,
up
=
True
,
up
=
True
,
kernel
=
"fir"
,
# TODO(Patrick) - it seems like both fir and non-fir kernels are fine
kernel
=
"fir"
if
self
.
fir
else
"sde_vp"
,
use_nin_shortcut
=
True
,
use_nin_shortcut
=
True
,
)
)
)
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment