Unverified Commit db969cc1 authored by Sai-Suraj-27's avatar Sai-Suraj-27 Committed by GitHub
Browse files

fix: Fixed `type annotations` for compatability with python 3.8 (#7648)

* Fixed type annotations for compatability with python 3.8

* Add required imports.
parent 3cfe187d
...@@ -151,7 +151,7 @@ def concat_first(feat: torch.Tensor, dim: int = 2, scale: float = 1.0) -> torch. ...@@ -151,7 +151,7 @@ def concat_first(feat: torch.Tensor, dim: int = 2, scale: float = 1.0) -> torch.
return torch.cat((feat, feat_style), dim=dim) return torch.cat((feat, feat_style), dim=dim)
def calc_mean_std(feat: torch.Tensor, eps: float = 1e-5) -> tuple[torch.Tensor, torch.Tensor]: def calc_mean_std(feat: torch.Tensor, eps: float = 1e-5) -> Tuple[torch.Tensor, torch.Tensor]:
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt() feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
feat_mean = feat.mean(dim=-2, keepdims=True) feat_mean = feat.mean(dim=-2, keepdims=True)
return feat_mean, feat_std return feat_mean, feat_std
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
import inspect import inspect
from collections.abc import Callable from collections.abc import Callable
from typing import Any, List, Optional, Union from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np import numpy as np
import PIL import PIL
...@@ -1211,8 +1211,8 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline( ...@@ -1211,8 +1211,8 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
@replace_example_docstring(EXAMPLE_DOC_STRING) @replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__( def __call__(
self, self,
prompt: Optional[Union[str, list[str]]] = None, prompt: Optional[Union[str, List[str]]] = None,
prompt_2: Optional[Union[str, list[str]]] = None, prompt_2: Optional[Union[str, List[str]]] = None,
image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None, image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None,
mask_image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None, mask_image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None,
adapter_image: PipelineImageInput = None, adapter_image: PipelineImageInput = None,
...@@ -1224,11 +1224,11 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline( ...@@ -1224,11 +1224,11 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
denoising_start: Optional[float] = None, denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None, denoising_end: Optional[float] = None,
guidance_scale: float = 5.0, guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, list[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, list[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1, num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0, eta: float = 0.0,
generator: Optional[Union[torch.Generator, list[torch.Generator]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[Union[torch.FloatTensor]] = None, latents: Optional[Union[torch.FloatTensor]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None,
...@@ -1238,12 +1238,12 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline( ...@@ -1238,12 +1238,12 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
return_dict: bool = True, return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1, callback_steps: int = 1,
cross_attention_kwargs: Optional[dict[str, Any]] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0, guidance_rescale: float = 0.0,
original_size: Optional[tuple[int, int]] = None, original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Optional[tuple[int, int]] = (0, 0), crops_coords_top_left: Optional[Tuple[int, int]] = (0, 0),
target_size: Optional[tuple[int, int]] = None, target_size: Optional[Tuple[int, int]] = None,
adapter_conditioning_scale: Optional[Union[float, list[float]]] = 1.0, adapter_conditioning_scale: Optional[Union[float, List[float]]] = 1.0,
cond_tau: float = 1.0, cond_tau: float = 1.0,
aesthetic_score: float = 6.0, aesthetic_score: float = 6.0,
negative_aesthetic_score: float = 2.5, negative_aesthetic_score: float = 2.5,
......
...@@ -637,7 +637,7 @@ def _filter2d(input, kernel): ...@@ -637,7 +637,7 @@ def _filter2d(input, kernel):
height, width = tmp_kernel.shape[-2:] height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width]) padding_shape: List[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect") input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params # kernel and input tensor reshape to align element-wise or batch-wise params
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment