Unverified Commit d72184eb authored by Leo Jiang's avatar Leo Jiang Committed by GitHub
Browse files

[training] add ds support to lora hidream (#11737)



* [training] add ds support to lora hidream

* Apply style fixes

---------
Co-authored-by: default avatarJ石页 <jiangshuo9@h-partners.com>
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
Co-authored-by: default avatargithub-actions[bot] <github-actions[bot]@users.noreply.github.com>
parent 5ce4814a
...@@ -29,7 +29,7 @@ from pathlib import Path ...@@ -29,7 +29,7 @@ from pathlib import Path
import numpy as np import numpy as np
import torch import torch
import transformers import transformers
from accelerate import Accelerator from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder from huggingface_hub import create_repo, upload_folder
...@@ -1181,13 +1181,15 @@ def main(args): ...@@ -1181,13 +1181,15 @@ def main(args):
transformer_lora_layers_to_save = None transformer_lora_layers_to_save = None
for model in models: for model in models:
if isinstance(model, type(unwrap_model(transformer))): if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
model = unwrap_model(model)
transformer_lora_layers_to_save = get_peft_model_state_dict(model) transformer_lora_layers_to_save = get_peft_model_state_dict(model)
else: else:
raise ValueError(f"unexpected save model: {model.__class__}") raise ValueError(f"unexpected save model: {model.__class__}")
# make sure to pop weight so that corresponding model is not saved again # make sure to pop weight so that corresponding model is not saved again
weights.pop() if weights:
weights.pop()
HiDreamImagePipeline.save_lora_weights( HiDreamImagePipeline.save_lora_weights(
output_dir, output_dir,
...@@ -1197,13 +1199,20 @@ def main(args): ...@@ -1197,13 +1199,20 @@ def main(args):
def load_model_hook(models, input_dir): def load_model_hook(models, input_dir):
transformer_ = None transformer_ = None
while len(models) > 0: if not accelerator.distributed_type == DistributedType.DEEPSPEED:
model = models.pop() while len(models) > 0:
model = models.pop()
if isinstance(model, type(unwrap_model(transformer))): if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
transformer_ = model model = unwrap_model(model)
else: transformer_ = model
raise ValueError(f"unexpected save model: {model.__class__}") else:
raise ValueError(f"unexpected save model: {model.__class__}")
else:
transformer_ = HiDreamImageTransformer2DModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="transformer"
)
transformer_.add_adapter(transformer_lora_config)
lora_state_dict = HiDreamImagePipeline.lora_state_dict(input_dir) lora_state_dict = HiDreamImagePipeline.lora_state_dict(input_dir)
...@@ -1655,7 +1664,7 @@ def main(args): ...@@ -1655,7 +1664,7 @@ def main(args):
progress_bar.update(1) progress_bar.update(1)
global_step += 1 global_step += 1
if accelerator.is_main_process: if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
if global_step % args.checkpointing_steps == 0: if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None: if args.checkpoints_total_limit is not None:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment