Unverified Commit cd7071e7 authored by Steven Liu's avatar Steven Liu Committed by GitHub
Browse files

[docs] Add safetensors flag (#4245)

* add safetensors flag

* apply review
parent e31f38b5
......@@ -29,6 +29,7 @@ from diffusers import StableDiffusionInpaintPipeline
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipeline = pipeline.to("cuda")
```
......
......@@ -39,7 +39,7 @@ The [`DiffusionPipeline`] class is the simplest and most generic way to load any
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
pipe = DiffusionPipeline.from_pretrained(repo_id)
pipe = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
```
You can also load a checkpoint with it's specific pipeline class. The example above loaded a Stable Diffusion model; to get the same result, use the [`StableDiffusionPipeline`] class:
......@@ -48,7 +48,7 @@ You can also load a checkpoint with it's specific pipeline class. The example ab
from diffusers import StableDiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(repo_id)
pipe = StableDiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
```
A checkpoint (such as [`CompVis/stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) or [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)) may also be used for more than one task, like text-to-image or image-to-image. To differentiate what task you want to use the checkpoint for, you have to load it directly with it's corresponding task-specific pipeline class:
......@@ -75,7 +75,7 @@ Then pass the local path to [`~DiffusionPipeline.from_pretrained`]:
from diffusers import DiffusionPipeline
repo_id = "./stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id)
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
```
The [`~DiffusionPipeline.from_pretrained`] method won't download any files from the Hub when it detects a local path, but this also means it won't download and cache the latest changes to a checkpoint.
......@@ -94,7 +94,7 @@ To find out which schedulers are compatible for customization, you can use the `
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id)
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
stable_diffusion.scheduler.compatibles
```
......@@ -109,7 +109,7 @@ repo_id = "runwayml/stable-diffusion-v1-5"
scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, scheduler=scheduler)
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, scheduler=scheduler, use_safetensors=True)
```
### Safety checker
......@@ -120,7 +120,7 @@ Diffusion models like Stable Diffusion can generate harmful content, which is wh
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, safety_checker=None)
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, safety_checker=None, use_safetensors=True)
```
### Reuse components across pipelines
......@@ -131,7 +131,7 @@ You can also reuse the same components in multiple pipelines to avoid loading th
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id)
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
components = stable_diffusion_txt2img.components
```
......@@ -148,7 +148,7 @@ You can also pass the components individually to the pipeline if you want more f
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id)
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(
vae=stable_diffusion_txt2img.vae,
text_encoder=stable_diffusion_txt2img.text_encoder,
......@@ -194,10 +194,12 @@ import torch
# load fp16 variant
stable_diffusion = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16
"runwayml/stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
# load non_ema variant
stable_diffusion = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", variant="non_ema")
stable_diffusion = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", variant="non_ema", use_safetensors=True
)
```
To save a checkpoint stored in a different floating point type or as a non-EMA variant, use the [`DiffusionPipeline.save_pretrained`] method and specify the `variant` argument. You should try and save a variant to the same folder as the original checkpoint, so you can load both from the same folder:
......@@ -215,10 +217,12 @@ If you don't save the variant to an existing folder, you must specify the `varia
```python
# 👎 this won't work
stable_diffusion = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5", torch_dtype=torch.float16)
stable_diffusion = DiffusionPipeline.from_pretrained(
"./stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
# 👍 this works
stable_diffusion = DiffusionPipeline.from_pretrained(
"./stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16
"./stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
```
......@@ -233,7 +237,7 @@ load model variants, e.g.:
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16")
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", use_safetensors=True)
```
However, this behavior is now deprecated since the "revision" argument should (just as it's done in GitHub) better be used to load model checkpoints from a specific commit or branch in development.
......@@ -259,7 +263,7 @@ Models can be loaded from a subfolder with the `subfolder` argument. For example
from diffusers import UNet2DConditionModel
repo_id = "runwayml/stable-diffusion-v1-5"
model = UNet2DConditionModel.from_pretrained(repo_id, subfolder="unet")
model = UNet2DConditionModel.from_pretrained(repo_id, subfolder="unet", use_safetensors=True)
```
Or directly from a repository's [directory](https://huggingface.co/google/ddpm-cifar10-32/tree/main):
......@@ -268,7 +272,7 @@ Or directly from a repository's [directory](https://huggingface.co/google/ddpm-c
from diffusers import UNet2DModel
repo_id = "google/ddpm-cifar10-32"
model = UNet2DModel.from_pretrained(repo_id)
model = UNet2DModel.from_pretrained(repo_id, use_safetensors=True)
```
You can also load and save model variants by specifying the `variant` argument in [`ModelMixin.from_pretrained`] and [`ModelMixin.save_pretrained`]:
......@@ -276,7 +280,9 @@ You can also load and save model variants by specifying the `variant` argument i
```python
from diffusers import UNet2DConditionModel
model = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", variant="non-ema")
model = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="unet", variant="non-ema", use_safetensors=True
)
model.save_pretrained("./local-unet", variant="non-ema")
```
......@@ -310,7 +316,7 @@ euler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
dpm = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
# replace `dpm` with any of `ddpm`, `ddim`, `pndm`, `lms`, `euler_anc`, `euler`
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, scheduler=dpm)
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, scheduler=dpm, use_safetensors=True)
```
## DiffusionPipeline explained
......@@ -326,7 +332,7 @@ The pipelines underlying folder structure corresponds directly with their class
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(repo_id)
pipeline = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
print(pipeline)
```
......
......@@ -111,7 +111,9 @@ If you prefer to run inference with code, click on the **Use in Diffusers** butt
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline", use_safetensors=True
)
```
Then you can generate an image like:
......@@ -119,7 +121,9 @@ Then you can generate an image like:
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline", use_safetensors=True
)
pipeline.to("cuda")
placeholder_token = "<my-funny-cat-token>"
......
......@@ -40,7 +40,7 @@ import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim = DDIMPipeline.from_pretrained(model_id, use_safetensors=True)
# run pipeline for just two steps and return numpy tensor
image = ddim(num_inference_steps=2, output_type="np").images
......@@ -65,7 +65,7 @@ import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim = DDIMPipeline.from_pretrained(model_id, use_safetensors=True)
# create a generator for reproducibility
generator = torch.Generator(device="cpu").manual_seed(0)
......@@ -100,7 +100,7 @@ import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim = DDIMPipeline.from_pretrained(model_id, use_safetensors=True)
ddim.to("cuda")
# create a generator for reproducibility
......@@ -125,7 +125,7 @@ import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim = DDIMPipeline.from_pretrained(model_id, use_safetensors=True)
ddim.to("cuda")
# create a generator for reproducibility; notice you don't place it on the GPU!
......@@ -174,7 +174,7 @@ from diffusers import DDIMScheduler, StableDiffusionPipeline
import numpy as np
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to("cuda")
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
g = torch.Generator(device="cuda")
......
......@@ -27,7 +27,9 @@ Instantiate a pipeline with [`DiffusionPipeline.from_pretrained`] and place it o
```python
>>> from diffusers import DiffusionPipeline
>>> pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
>>> pipe = DiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
... )
>>> pipe = pipe.to("cuda")
```
......
......@@ -39,7 +39,9 @@ import torch
login()
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
```
Next, we move it to GPU:
......
......@@ -49,7 +49,9 @@ repo_id_embeds = "sd-concepts-library/cat-toy"
Now you can load a pipeline, and pass the pre-learned concept to it:
```py
pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16).to("cuda")
pipeline = StableDiffusionPipeline.from_pretrained(
pretrained_model_name_or_path, torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
pipeline.load_textual_inversion(repo_id_embeds)
```
......
......@@ -32,7 +32,7 @@ In this guide, you'll use [`DiffusionPipeline`] for unconditional image generati
```python
>>> from diffusers import DiffusionPipeline
>>> generator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128")
>>> generator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128", use_safetensors=True)
```
The [`DiffusionPipeline`] downloads and caches all modeling, tokenization, and scheduling components.
......
......@@ -40,7 +40,9 @@ You can use the model with the new `.safetensors` weights by specifying the refe
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", revision="refs/pr/22")
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", revision="refs/pr/22", use_safetensors=True
)
```
## Why use safetensors?
......@@ -55,7 +57,7 @@ There are several reasons for using safetensors:
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", use_safetensors=True)
"Loaded in safetensors 0:00:02.033658"
"Loaded in PyTorch 0:00:02.663379"
```
......
......@@ -25,7 +25,7 @@ A pipeline is a quick and easy way to run a model for inference, requiring no mo
```py
>>> from diffusers import DDPMPipeline
>>> ddpm = DDPMPipeline.from_pretrained("google/ddpm-cat-256").to("cuda")
>>> ddpm = DDPMPipeline.from_pretrained("google/ddpm-cat-256", use_safetensors=True).to("cuda")
>>> image = ddpm(num_inference_steps=25).images[0]
>>> image
```
......@@ -46,7 +46,7 @@ To recreate the pipeline with the model and scheduler separately, let's write ou
>>> from diffusers import DDPMScheduler, UNet2DModel
>>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
>>> model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
>>> model = UNet2DModel.from_pretrained("google/ddpm-cat-256", use_safetensors=True).to("cuda")
```
2. Set the number of timesteps to run the denoising process for:
......@@ -124,10 +124,14 @@ Now that you know what you need for the Stable Diffusion pipeline, load all thes
>>> from transformers import CLIPTextModel, CLIPTokenizer
>>> from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler
>>> vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
>>> vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae", use_safetensors=True)
>>> tokenizer = CLIPTokenizer.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="tokenizer")
>>> text_encoder = CLIPTextModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="text_encoder")
>>> unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
>>> text_encoder = CLIPTextModel.from_pretrained(
... "CompVis/stable-diffusion-v1-4", subfolder="text_encoder", use_safetensors=True
... )
>>> unet = UNet2DConditionModel.from_pretrained(
... "CompVis/stable-diffusion-v1-4", subfolder="unet", use_safetensors=True
... )
```
Instead of the default [`PNDMScheduler`], exchange it for the [`UniPCMultistepScheduler`] to see how easy it is to plug a different scheduler in:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment