There are many datasets on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) to train a model on, but if you can't find one you're interested in or want to use your own, you can create a dataset with the 🤗 [Datasets](hf.co/docs/datasets) library. The dataset structure depends on the task you want to train your model on. The most basic dataset structure is a directory of images for tasks like unconditional image generation. Another dataset structure may be a directory of images and a text file containing their corresponding text captions for tasks like text-to-image generation.
There are many datasets on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) to train a model on, but if you can't find one you're interested in or want to use your own, you can create a dataset with the 🤗 [Datasets](https://huggingface.co/docs/datasets) library. The dataset structure depends on the task you want to train your model on. The most basic dataset structure is a directory of images for tasks like unconditional image generation. Another dataset structure may be a directory of images and a text file containing their corresponding text captions for tasks like text-to-image generation.
This guide will show you two ways to create a dataset to finetune on:
This guide will show you two ways to create a dataset to finetune on:
Now that you've created a dataset, you can plug it into the `train_data_dir` (if your dataset is local) or `dataset_name` (if your dataset is on the Hub) arguments of a training script.
Now that you've created a dataset, you can plug it into the `train_data_dir` (if your dataset is local) or `dataset_name` (if your dataset is on the Hub) arguments of a training script.
For your next steps, feel free to try and use your dataset to train a model for [unconditional generation](unconditional_training) or [text-to-image generation](text2image)!
For your next steps, feel free to try and use your dataset to train a model for [unconditional generation](unconditional_training) or [text-to-image generation](text2image)!
[base 모델 체크포인트](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)에서, StableDiffusion-XL 또한 고주파 품질을 향상시키는 이미지를 생성하기 위해 낮은 노이즈 단계 이미지를 제거하는데 특화된 [refiner 체크포인트](huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)를 포함하고 있습니다. 이 refiner 체크포인트는 이미지 품질을 향상시키기 위해 base 체크포인트를 실행한 후 "두 번째 단계" 파이프라인에 사용될 수 있습니다.
[base 모델 체크포인트](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)에서, StableDiffusion-XL 또한 고주파 품질을 향상시키는 이미지를 생성하기 위해 낮은 노이즈 단계 이미지를 제거하는데 특화된 [refiner 체크포인트](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)를 포함하고 있습니다. 이 refiner 체크포인트는 이미지 품질을 향상시키기 위해 base 체크포인트를 실행한 후 "두 번째 단계" 파이프라인에 사용될 수 있습니다.
refiner를 사용할 때, 쉽게 사용할 수 있습니다
refiner를 사용할 때, 쉽게 사용할 수 있습니다
- 1.) base 모델과 refiner을 사용하는데, 이는 *Denoisers의 앙상블*을 위한 첫 번째 제안된 [eDiff-I](https://research.nvidia.com/labs/dir/eDiff-I/)를 사용하거나
- 1.) base 모델과 refiner을 사용하는데, 이는 *Denoisers의 앙상블*을 위한 첫 번째 제안된 [eDiff-I](https://research.nvidia.com/labs/dir/eDiff-I/)를 사용하거나
...
@@ -215,7 +215,7 @@ image = refiner(
...
@@ -215,7 +215,7 @@ image = refiner(
#### 2.) 노이즈가 완전히 제거된 기본 이미지에서 이미지 출력을 정제하기
#### 2.) 노이즈가 완전히 제거된 기본 이미지에서 이미지 출력을 정제하기
일반적인 [`StableDiffusionImg2ImgPipeline`] 방식에서, 기본 모델에서 생성된 완전히 노이즈가 제거된 이미지는 [refiner checkpoint](huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)를 사용해 더 향상시킬 수 있습니다.
일반적인 [`StableDiffusionImg2ImgPipeline`] 방식에서, 기본 모델에서 생성된 완전히 노이즈가 제거된 이미지는 [refiner checkpoint](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)를 사용해 더 향상시킬 수 있습니다.
이를 위해, 보통의 "base" text-to-image 파이프라인을 수행 후에 image-to-image 파이프라인으로써 refiner를 실행시킬 수 있습니다. base 모델의 출력을 잠재 공간에 남겨둘 수 있습니다.
이를 위해, 보통의 "base" text-to-image 파이프라인을 수행 후에 image-to-image 파이프라인으로써 refiner를 실행시킬 수 있습니다. base 모델의 출력을 잠재 공간에 남겨둘 수 있습니다.
@@ -36,7 +36,7 @@ specific language governing permissions and limitations under the License.
...
@@ -36,7 +36,7 @@ specific language governing permissions and limitations under the License.
[cloneofsimo](https://github.com/cloneofsimo)는 인기 있는 [lora](https://github.com/cloneofsimo/lora) GitHub 리포지토리에서 Stable Diffusion을 위한 LoRA 학습을 최초로 시도했습니다. 🧨 Diffusers는 [text-to-image 생성](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image#training-with-lora) 및 [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#training-with-low-rank-adaptation-of-large-language-models-lora)을 지원합니다. 이 가이드는 두 가지를 모두 수행하는 방법을 보여줍니다.
[cloneofsimo](https://github.com/cloneofsimo)는 인기 있는 [lora](https://github.com/cloneofsimo/lora) GitHub 리포지토리에서 Stable Diffusion을 위한 LoRA 학습을 최초로 시도했습니다. 🧨 Diffusers는 [text-to-image 생성](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image#training-with-lora) 및 [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#training-with-low-rank-adaptation-of-large-language-models-lora)을 지원합니다. 이 가이드는 두 가지를 모두 수행하는 방법을 보여줍니다.
모델을 저장하거나 커뮤니티와 공유하려면 Hugging Face 계정에 로그인하세요(아직 계정이 없는 경우 [생성](hf.co/join)하세요):
모델을 저장하거나 커뮤니티와 공유하려면 Hugging Face 계정에 로그인하세요(아직 계정이 없는 경우 [생성](https://huggingface.co/join)하세요):