Unverified Commit c222570a authored by Leo Jiang's avatar Leo Jiang Committed by GitHub
Browse files

DeepSpeed adaption for flux-kontext (#12240)


Co-authored-by: default avatarJ石页 <jiangshuo9@h-partners.com>
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
parent 4e36bb0d
...@@ -29,8 +29,9 @@ from pathlib import Path ...@@ -29,8 +29,9 @@ from pathlib import Path
import numpy as np import numpy as np
import torch import torch
import transformers import transformers
from accelerate import Accelerator from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder from huggingface_hub import create_repo, upload_folder
from huggingface_hub.utils import insecure_hashlib from huggingface_hub.utils import insecure_hashlib
...@@ -1222,6 +1223,9 @@ def main(args): ...@@ -1222,6 +1223,9 @@ def main(args):
kwargs_handlers=[kwargs], kwargs_handlers=[kwargs],
) )
if accelerator.distributed_type == DistributedType.DEEPSPEED:
AcceleratorState().deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size
# Disable AMP for MPS. # Disable AMP for MPS.
if torch.backends.mps.is_available(): if torch.backends.mps.is_available():
accelerator.native_amp = False accelerator.native_amp = False
...@@ -1438,17 +1442,20 @@ def main(args): ...@@ -1438,17 +1442,20 @@ def main(args):
text_encoder_one_lora_layers_to_save = None text_encoder_one_lora_layers_to_save = None
modules_to_save = {} modules_to_save = {}
for model in models: for model in models:
if isinstance(model, type(unwrap_model(transformer))): if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
model = unwrap_model(model)
transformer_lora_layers_to_save = get_peft_model_state_dict(model) transformer_lora_layers_to_save = get_peft_model_state_dict(model)
modules_to_save["transformer"] = model modules_to_save["transformer"] = model
elif isinstance(model, type(unwrap_model(text_encoder_one))): elif isinstance(unwrap_model(model), type(unwrap_model(text_encoder_one))):
model = unwrap_model(model)
text_encoder_one_lora_layers_to_save = get_peft_model_state_dict(model) text_encoder_one_lora_layers_to_save = get_peft_model_state_dict(model)
modules_to_save["text_encoder"] = model modules_to_save["text_encoder"] = model
else: else:
raise ValueError(f"unexpected save model: {model.__class__}") raise ValueError(f"unexpected save model: {model.__class__}")
# make sure to pop weight so that corresponding model is not saved again # make sure to pop weight so that corresponding model is not saved again
weights.pop() if weights:
weights.pop()
FluxKontextPipeline.save_lora_weights( FluxKontextPipeline.save_lora_weights(
output_dir, output_dir,
...@@ -1461,15 +1468,25 @@ def main(args): ...@@ -1461,15 +1468,25 @@ def main(args):
transformer_ = None transformer_ = None
text_encoder_one_ = None text_encoder_one_ = None
while len(models) > 0: if not accelerator.distributed_type == DistributedType.DEEPSPEED:
model = models.pop() while len(models) > 0:
model = models.pop()
if isinstance(model, type(unwrap_model(transformer))): if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
transformer_ = model transformer_ = unwrap_model(model)
elif isinstance(model, type(unwrap_model(text_encoder_one))): elif isinstance(unwrap_model(model), type(unwrap_model(text_encoder_one))):
text_encoder_one_ = model text_encoder_one_ = unwrap_model(model)
else: else:
raise ValueError(f"unexpected save model: {model.__class__}") raise ValueError(f"unexpected save model: {model.__class__}")
else:
transformer_ = FluxTransformer2DModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="transformer"
)
transformer_.add_adapter(transformer_lora_config)
text_encoder_one_ = text_encoder_cls_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder"
)
lora_state_dict = FluxKontextPipeline.lora_state_dict(input_dir) lora_state_dict = FluxKontextPipeline.lora_state_dict(input_dir)
...@@ -2069,7 +2086,7 @@ def main(args): ...@@ -2069,7 +2086,7 @@ def main(args):
progress_bar.update(1) progress_bar.update(1)
global_step += 1 global_step += 1
if accelerator.is_main_process: if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
if global_step % args.checkpointing_steps == 0: if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None: if args.checkpoints_total_limit is not None:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment