Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
ba06124e
Unverified
Commit
ba06124e
authored
Sep 18, 2024
by
Aryan
Committed by
GitHub
Sep 17, 2024
Browse files
Remove CogVideoX mentions from single file docs; Test updates (#9444)
* remove mentions from single file * update tests * update
parent
bb1b0fa1
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
9 additions
and
18 deletions
+9
-18
docs/source/en/api/loaders/single_file.md
docs/source/en/api/loaders/single_file.md
+0
-4
tests/pipelines/cogvideo/test_cogvideox.py
tests/pipelines/cogvideo/test_cogvideox.py
+3
-6
tests/pipelines/cogvideo/test_cogvideox_image2video.py
tests/pipelines/cogvideo/test_cogvideox_image2video.py
+3
-2
tests/pipelines/cogvideo/test_cogvideox_video2video.py
tests/pipelines/cogvideo/test_cogvideox_video2video.py
+3
-6
No files found.
docs/source/en/api/loaders/single_file.md
View file @
ba06124e
...
...
@@ -22,9 +22,6 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
## Supported pipelines
-
[
`CogVideoXPipeline`
]
-
[
`CogVideoXImageToVideoPipeline`
]
-
[
`CogVideoXVideoToVideoPipeline`
]
-
[
`StableDiffusionPipeline`
]
-
[
`StableDiffusionImg2ImgPipeline`
]
-
[
`StableDiffusionInpaintPipeline`
]
...
...
@@ -52,7 +49,6 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
-
[
`UNet2DConditionModel`
]
-
[
`StableCascadeUNet`
]
-
[
`AutoencoderKL`
]
-
[
`AutoencoderKLCogVideoX`
]
-
[
`ControlNetModel`
]
-
[
`SD3Transformer2DModel`
]
-
[
`FluxTransformer2DModel`
]
...
...
tests/pipelines/cogvideo/test_cogvideox.py
View file @
ba06124e
...
...
@@ -57,6 +57,7 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
"callback_on_step_end_tensor_inputs"
,
]
)
test_xformers_attention
=
False
def
get_dummy_components
(
self
):
torch
.
manual_seed
(
0
)
...
...
@@ -71,8 +72,8 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
time_embed_dim
=
2
,
text_embed_dim
=
32
,
# Must match with tiny-random-t5
num_layers
=
1
,
sample_width
=
16
,
# latent width: 2 -> final width: 16
sample_height
=
16
,
# latent height: 2 -> final height: 16
sample_width
=
2
,
# latent width: 2 -> final width: 16
sample_height
=
2
,
# latent height: 2 -> final height: 16
sample_frames
=
9
,
# latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9
patch_size
=
2
,
temporal_compression_ratio
=
4
,
...
...
@@ -280,10 +281,6 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
"VAE tiling should not affect the inference results"
,
)
@
unittest
.
skip
(
"xformers attention processor does not exist for CogVideoX"
)
def
test_xformers_attention_forwardGenerator_pass
(
self
):
pass
def
test_fused_qkv_projections
(
self
):
device
=
"cpu"
# ensure determinism for the device-dependent torch.Generator
components
=
self
.
get_dummy_components
()
...
...
tests/pipelines/cogvideo/test_cogvideox_image2video.py
View file @
ba06124e
...
...
@@ -269,8 +269,9 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
generator_device
=
"cpu"
components
=
self
.
get_dummy_components
()
# The reason to modify it this way is because I2V Transformer limits the generation to resolutions.
# See the if-statement on "self.use_learned_positional_embeddings"
# The reason to modify it this way is because I2V Transformer limits the generation to resolutions used during initalization.
# This limitation comes from using learned positional embeddings which cannot be generated on-the-fly like sincos or RoPE embeddings.
# See the if-statement on "self.use_learned_positional_embeddings" in diffusers/models/embeddings.py
components
[
"transformer"
]
=
CogVideoXTransformer3DModel
.
from_config
(
components
[
"transformer"
].
config
,
sample_height
=
16
,
...
...
tests/pipelines/cogvideo/test_cogvideox_video2video.py
View file @
ba06124e
...
...
@@ -51,6 +51,7 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
"callback_on_step_end_tensor_inputs"
,
]
)
test_xformers_attention
=
False
def
get_dummy_components
(
self
):
torch
.
manual_seed
(
0
)
...
...
@@ -65,8 +66,8 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
time_embed_dim
=
2
,
text_embed_dim
=
32
,
# Must match with tiny-random-t5
num_layers
=
1
,
sample_width
=
16
,
# latent width: 2 -> final width: 16
sample_height
=
16
,
# latent height: 2 -> final height: 16
sample_width
=
2
,
# latent width: 2 -> final width: 16
sample_height
=
2
,
# latent height: 2 -> final height: 16
sample_frames
=
9
,
# latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9
patch_size
=
2
,
temporal_compression_ratio
=
4
,
...
...
@@ -285,10 +286,6 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
"VAE tiling should not affect the inference results"
,
)
@
unittest
.
skip
(
"xformers attention processor does not exist for CogVideoX"
)
def
test_xformers_attention_forwardGenerator_pass
(
self
):
pass
def
test_fused_qkv_projections
(
self
):
device
=
"cpu"
# ensure determinism for the device-dependent torch.Generator
components
=
self
.
get_dummy_components
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment