Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
b8bfef2a
Commit
b8bfef2a
authored
Mar 06, 2023
by
Patrick von Platen
Browse files
make style
parent
f3f626d5
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
7 deletions
+15
-7
examples/textual_inversion/textual_inversion_flax.py
examples/textual_inversion/textual_inversion_flax.py
+15
-7
No files found.
examples/textual_inversion/textual_inversion_flax.py
View file @
b8bfef2a
...
...
@@ -433,9 +433,15 @@ def main():
placeholder_token_id
=
tokenizer
.
convert_tokens_to_ids
(
args
.
placeholder_token
)
# Load models and create wrapper for stable diffusion
text_encoder
=
FlaxCLIPTextModel
.
from_pretrained
(
args
.
pretrained_model_name_or_path
,
subfolder
=
"text_encoder"
,
revision
=
args
.
revision
)
vae
,
vae_params
=
FlaxAutoencoderKL
.
from_pretrained
(
args
.
pretrained_model_name_or_path
,
subfolder
=
"vae"
,
revision
=
args
.
revision
)
unet
,
unet_params
=
FlaxUNet2DConditionModel
.
from_pretrained
(
args
.
pretrained_model_name_or_path
,
subfolder
=
"unet"
,
revision
=
args
.
revision
)
text_encoder
=
FlaxCLIPTextModel
.
from_pretrained
(
args
.
pretrained_model_name_or_path
,
subfolder
=
"text_encoder"
,
revision
=
args
.
revision
)
vae
,
vae_params
=
FlaxAutoencoderKL
.
from_pretrained
(
args
.
pretrained_model_name_or_path
,
subfolder
=
"vae"
,
revision
=
args
.
revision
)
unet
,
unet_params
=
FlaxUNet2DConditionModel
.
from_pretrained
(
args
.
pretrained_model_name_or_path
,
subfolder
=
"unet"
,
revision
=
args
.
revision
)
# Create sampling rng
rng
=
jax
.
random
.
PRNGKey
(
args
.
seed
)
...
...
@@ -633,11 +639,13 @@ def main():
if
global_step
>=
args
.
max_train_steps
:
break
if
global_step
%
args
.
save_steps
==
0
:
learned_embeds
=
get_params_to_save
(
state
.
params
)[
"text_model"
][
"embeddings"
][
"token_embedding"
][
"embedding"
][
placeholder_token_id
]
learned_embeds
=
get_params_to_save
(
state
.
params
)[
"text_model"
][
"embeddings"
][
"token_embedding"
][
"embedding"
]
[
placeholder_token_id
]
learned_embeds_dict
=
{
args
.
placeholder_token
:
learned_embeds
}
jnp
.
save
(
os
.
path
.
join
(
args
.
output_dir
,
"learned_embeds-"
+
str
(
global_step
)
+
".npy"
),
learned_embeds_dict
)
jnp
.
save
(
os
.
path
.
join
(
args
.
output_dir
,
"learned_embeds-"
+
str
(
global_step
)
+
".npy"
),
learned_embeds_dict
)
train_metric
=
jax_utils
.
unreplicate
(
train_metric
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment