Unverified Commit a080f0d3 authored by Sayak Paul's avatar Sayak Paul Committed by GitHub
Browse files

[Training Utils] create a utility for casting the lora params during training. (#6553)

create a utility for casting the lora params during training.
parent 79df5038
......@@ -51,7 +51,7 @@ from diffusers import (
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import resolve_interpolation_mode
from diffusers.training_utils import cast_training_params, resolve_interpolation_mode
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
......@@ -860,10 +860,8 @@ def main(args):
# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
for param in unet.parameters():
# only upcast trainable parameters (LoRA) into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(unet, dtype=torch.float32)
# Also move the alpha and sigma noise schedules to accelerator.device.
alpha_schedule = alpha_schedule.to(accelerator.device)
......
......@@ -53,7 +53,7 @@ from diffusers import (
)
from diffusers.loaders import LoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import _set_state_dict_into_text_encoder, compute_snr
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr
from diffusers.utils import (
check_min_version,
convert_state_dict_to_diffusers,
......@@ -1086,11 +1086,8 @@ def main(args):
models = [unet_]
if args.train_text_encoder:
models.extend([text_encoder_one_, text_encoder_two_])
for model in models:
for param in model.parameters():
# only upcast trainable parameters (LoRA) into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(models)
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
......@@ -1110,11 +1107,9 @@ def main(args):
models = [unet]
if args.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
for model in models:
for param in model.parameters():
# only upcast trainable parameters (LoRA) into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(models, dtype=torch.float32)
unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))
......
......@@ -43,7 +43,7 @@ from transformers import CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import compute_snr
from diffusers.training_utils import cast_training_params, compute_snr
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
......@@ -466,10 +466,8 @@ def main():
# Add adapter and make sure the trainable params are in float32.
unet.add_adapter(unet_lora_config)
if args.mixed_precision == "fp16":
for param in unet.parameters():
# only upcast trainable parameters (LoRA) into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(unet, dtype=torch.float32)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
......
......@@ -51,7 +51,7 @@ from diffusers import (
)
from diffusers.loaders import LoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import compute_snr
from diffusers.training_utils import cast_training_params, compute_snr
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
......@@ -634,11 +634,8 @@ def main(args):
models = [unet]
if args.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
for model in models:
for param in model.parameters():
# only upcast trainable parameters (LoRA) into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(models, dtype=torch.float32)
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
......
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
from typing import Any, Dict, Iterable, List, Optional, Union
import numpy as np
import torch
......@@ -121,6 +121,16 @@ def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]:
return lora_state_dict
def cast_training_params(model: Union[torch.nn.Module, List[torch.nn.Module]], dtype=torch.float32):
if not isinstance(model, list):
model = [model]
for m in model:
for param in m.parameters():
# only upcast trainable parameters into fp32
if param.requires_grad:
param.data = param.to(dtype)
def _set_state_dict_into_text_encoder(
lora_state_dict: Dict[str, torch.Tensor], prefix: str, text_encoder: torch.nn.Module
):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment