Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
9e8ee2ac
Unverified
Commit
9e8ee2ac
authored
Feb 13, 2023
by
Will Berman
Committed by
GitHub
Feb 13, 2023
Browse files
dreambooth checkpointing tests and docs (#2339)
parent
6782b70d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
86 additions
and
3 deletions
+86
-3
examples/dreambooth/train_dreambooth.py
examples/dreambooth/train_dreambooth.py
+5
-3
examples/test_examples.py
examples/test_examples.py
+81
-0
No files found.
examples/dreambooth/train_dreambooth.py
View file @
9e8ee2ac
...
@@ -188,9 +188,11 @@ def parse_args(input_args=None):
...
@@ -188,9 +188,11 @@ def parse_args(input_args=None):
type
=
int
,
type
=
int
,
default
=
500
,
default
=
500
,
help
=
(
help
=
(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
" training using `--resume_from_checkpoint`."
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
"instructions."
),
),
)
)
parser
.
add_argument
(
parser
.
add_argument
(
...
...
examples/test_examples.py
View file @
9e8ee2ac
...
@@ -25,6 +25,8 @@ from typing import List
...
@@ -25,6 +25,8 @@ from typing import List
from
accelerate.utils
import
write_basic_config
from
accelerate.utils
import
write_basic_config
from
diffusers
import
DiffusionPipeline
,
UNet2DConditionModel
logging
.
basicConfig
(
level
=
logging
.
DEBUG
)
logging
.
basicConfig
(
level
=
logging
.
DEBUG
)
...
@@ -140,6 +142,85 @@ class ExamplesTestsAccelerate(unittest.TestCase):
...
@@ -140,6 +142,85 @@ class ExamplesTestsAccelerate(unittest.TestCase):
self
.
assertTrue
(
os
.
path
.
isfile
(
os
.
path
.
join
(
tmpdir
,
"unet"
,
"diffusion_pytorch_model.bin"
)))
self
.
assertTrue
(
os
.
path
.
isfile
(
os
.
path
.
join
(
tmpdir
,
"unet"
,
"diffusion_pytorch_model.bin"
)))
self
.
assertTrue
(
os
.
path
.
isfile
(
os
.
path
.
join
(
tmpdir
,
"scheduler"
,
"scheduler_config.json"
)))
self
.
assertTrue
(
os
.
path
.
isfile
(
os
.
path
.
join
(
tmpdir
,
"scheduler"
,
"scheduler_config.json"
)))
def
test_dreambooth_checkpointing
(
self
):
with
tempfile
.
TemporaryDirectory
()
as
tmpdir
:
instance_prompt
=
"photo"
pretrained_model_name_or_path
=
"hf-internal-testing/tiny-stable-diffusion-pipe"
# Run training script with checkpointing
# max_train_steps == 5, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4
initial_run_args
=
f
"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path
{
pretrained_model_name_or_path
}
--instance_data_dir docs/source/en/imgs
--instance_prompt
{
instance_prompt
}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 5
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir
{
tmpdir
}
--checkpointing_steps=2
--seed=0
"""
.
split
()
run_command
(
self
.
_launch_args
+
initial_run_args
)
# check can run the original fully trained output pipeline
pipe
=
DiffusionPipeline
.
from_pretrained
(
tmpdir
,
safety_checker
=
None
)
pipe
(
instance_prompt
,
num_inference_steps
=
2
)
# check checkpoint directories exist
self
.
assertTrue
(
os
.
path
.
isdir
(
os
.
path
.
join
(
tmpdir
,
"checkpoint-2"
)))
self
.
assertTrue
(
os
.
path
.
isdir
(
os
.
path
.
join
(
tmpdir
,
"checkpoint-4"
)))
# check can run an intermediate checkpoint
unet
=
UNet2DConditionModel
.
from_pretrained
(
tmpdir
,
subfolder
=
"checkpoint-2/unet"
)
pipe
=
DiffusionPipeline
.
from_pretrained
(
pretrained_model_name_or_path
,
unet
=
unet
,
safety_checker
=
None
)
pipe
(
instance_prompt
,
num_inference_steps
=
2
)
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
shutil
.
rmtree
(
os
.
path
.
join
(
tmpdir
,
"checkpoint-2"
))
# Run training script for 7 total steps resuming from checkpoint 4
resume_run_args
=
f
"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path
{
pretrained_model_name_or_path
}
--instance_data_dir docs/source/en/imgs
--instance_prompt
{
instance_prompt
}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir
{
tmpdir
}
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--seed=0
"""
.
split
()
run_command
(
self
.
_launch_args
+
resume_run_args
)
# check can run new fully trained pipeline
pipe
=
DiffusionPipeline
.
from_pretrained
(
tmpdir
,
safety_checker
=
None
)
pipe
(
instance_prompt
,
num_inference_steps
=
2
)
# check old checkpoints do not exist
self
.
assertFalse
(
os
.
path
.
isdir
(
os
.
path
.
join
(
tmpdir
,
"checkpoint-2"
)))
# check new checkpoints exist
self
.
assertTrue
(
os
.
path
.
isdir
(
os
.
path
.
join
(
tmpdir
,
"checkpoint-4"
)))
self
.
assertTrue
(
os
.
path
.
isdir
(
os
.
path
.
join
(
tmpdir
,
"checkpoint-6"
)))
def
test_text_to_image
(
self
):
def
test_text_to_image
(
self
):
with
tempfile
.
TemporaryDirectory
()
as
tmpdir
:
with
tempfile
.
TemporaryDirectory
()
as
tmpdir
:
test_args
=
f
"""
test_args
=
f
"""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment