Unverified Commit 9e8ee2ac authored by Will Berman's avatar Will Berman Committed by GitHub
Browse files

dreambooth checkpointing tests and docs (#2339)

parent 6782b70d
...@@ -188,9 +188,11 @@ def parse_args(input_args=None): ...@@ -188,9 +188,11 @@ def parse_args(input_args=None):
type=int, type=int,
default=500, default=500,
help=( help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
" training using `--resume_from_checkpoint`." "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
"instructions."
), ),
) )
parser.add_argument( parser.add_argument(
......
...@@ -25,6 +25,8 @@ from typing import List ...@@ -25,6 +25,8 @@ from typing import List
from accelerate.utils import write_basic_config from accelerate.utils import write_basic_config
from diffusers import DiffusionPipeline, UNet2DConditionModel
logging.basicConfig(level=logging.DEBUG) logging.basicConfig(level=logging.DEBUG)
...@@ -140,6 +142,85 @@ class ExamplesTestsAccelerate(unittest.TestCase): ...@@ -140,6 +142,85 @@ class ExamplesTestsAccelerate(unittest.TestCase):
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin")))
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))
def test_dreambooth_checkpointing(self):
with tempfile.TemporaryDirectory() as tmpdir:
instance_prompt = "photo"
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
# Run training script with checkpointing
# max_train_steps == 5, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4
initial_run_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path {pretrained_model_name_or_path}
--instance_data_dir docs/source/en/imgs
--instance_prompt {instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 5
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=2
--seed=0
""".split()
run_command(self._launch_args + initial_run_args)
# check can run the original fully trained output pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(instance_prompt, num_inference_steps=2)
# check checkpoint directories exist
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
# check can run an intermediate checkpoint
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
pipe(instance_prompt, num_inference_steps=2)
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
# Run training script for 7 total steps resuming from checkpoint 4
resume_run_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path {pretrained_model_name_or_path}
--instance_data_dir docs/source/en/imgs
--instance_prompt {instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--seed=0
""".split()
run_command(self._launch_args + resume_run_args)
# check can run new fully trained pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(instance_prompt, num_inference_steps=2)
# check old checkpoints do not exist
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
# check new checkpoints exist
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6")))
def test_text_to_image(self): def test_text_to_image(self):
with tempfile.TemporaryDirectory() as tmpdir: with tempfile.TemporaryDirectory() as tmpdir:
test_args = f""" test_args = f"""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment