Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
9da575d6
Commit
9da575d6
authored
Jul 01, 2022
by
Patrick von Platen
Browse files
correct more
parent
61dc6574
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
19 additions
and
10 deletions
+19
-10
src/diffusers/models/resnet.py
src/diffusers/models/resnet.py
+5
-9
src/diffusers/models/unet_sde_score_estimation.py
src/diffusers/models/unet_sde_score_estimation.py
+14
-1
No files found.
src/diffusers/models/resnet.py
View file @
9da575d6
...
@@ -404,9 +404,6 @@ class ResnetBlock(nn.Module):
...
@@ -404,9 +404,6 @@ class ResnetBlock(nn.Module):
if
groups_out
is
None
:
if
groups_out
is
None
:
groups_out
=
groups
groups_out
=
groups
if
use_nin_shortcut
is
None
:
use_nin_shortcut
=
self
.
in_channels
!=
self
.
out_channels
if
self
.
pre_norm
:
if
self
.
pre_norm
:
self
.
norm1
=
Normalize
(
in_channels
,
num_groups
=
groups
,
eps
=
eps
)
self
.
norm1
=
Normalize
(
in_channels
,
num_groups
=
groups
,
eps
=
eps
)
else
:
else
:
...
@@ -439,8 +436,11 @@ class ResnetBlock(nn.Module):
...
@@ -439,8 +436,11 @@ class ResnetBlock(nn.Module):
self
.
upsample
=
Upsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
)
if
self
.
up
else
None
self
.
upsample
=
Upsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
)
if
self
.
up
else
None
self
.
downsample
=
Downsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
,
padding
=
1
,
name
=
"op"
)
if
self
.
down
else
None
self
.
downsample
=
Downsample
(
in_channels
,
use_conv
=
False
,
dims
=
2
,
padding
=
1
,
name
=
"op"
)
if
self
.
down
else
None
self
.
nin_shortcut
=
None
self
.
nin_shortcut
=
use_nin_shortcut
if
use_nin_shortcut
:
if
self
.
use_nin_shortcut
is
None
:
self
.
use_nin_shortcut
=
self
.
in_channels
!=
self
.
out_channels
if
self
.
use_nin_shortcut
:
self
.
nin_shortcut
=
torch
.
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
nin_shortcut
=
torch
.
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
# TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED
# TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED
...
@@ -613,10 +613,6 @@ class ResnetBlock(nn.Module):
...
@@ -613,10 +613,6 @@ class ResnetBlock(nn.Module):
x
=
self
.
downsample
(
x
)
x
=
self
.
downsample
(
x
)
h
=
self
.
downsample
(
h
)
h
=
self
.
downsample
(
h
)
# if self.up: or self.down:
# x = self.x_upd(x)
# h = self.h_upd(h)
#
h
=
self
.
conv1
(
h
)
h
=
self
.
conv1
(
h
)
if
not
self
.
pre_norm
:
if
not
self
.
pre_norm
:
...
...
src/diffusers/models/unet_sde_score_estimation.py
View file @
9da575d6
...
@@ -29,6 +29,7 @@ from .attention import AttentionBlock
...
@@ -29,6 +29,7 @@ from .attention import AttentionBlock
from
.embeddings
import
GaussianFourierProjection
,
get_timestep_embedding
from
.embeddings
import
GaussianFourierProjection
,
get_timestep_embedding
from
.resnet
import
downsample_2d
,
upfirdn2d
,
upsample_2d
from
.resnet
import
downsample_2d
,
upfirdn2d
,
upsample_2d
from
.resnet
import
ResnetBlockBigGANppNew
as
ResnetBlockBigGANpp
from
.resnet
import
ResnetBlockBigGANppNew
as
ResnetBlockBigGANpp
from
.resnet
import
ResnetBlock
as
ResnetNew
def
_setup_kernel
(
k
):
def
_setup_kernel
(
k
):
...
@@ -346,7 +347,19 @@ class NCSNpp(ModelMixin, ConfigMixin):
...
@@ -346,7 +347,19 @@ class NCSNpp(ModelMixin, ConfigMixin):
# Residual blocks for this resolution
# Residual blocks for this resolution
for
i_block
in
range
(
num_res_blocks
):
for
i_block
in
range
(
num_res_blocks
):
out_ch
=
nf
*
ch_mult
[
i_level
]
out_ch
=
nf
*
ch_mult
[
i_level
]
modules
.
append
(
ResnetBlock
(
in_ch
=
in_ch
,
out_ch
=
out_ch
))
# modules.append(ResnetBlock(in_ch=in_ch, out_ch=out_ch))
modules
.
append
(
ResnetNew
(
in_channels
=
in_ch
,
out_channels
=
out_ch
,
temb_channels
=
4
*
nf
,
output_scale_factor
=
np
.
sqrt
(
2.0
),
non_linearity
=
"silu"
,
groups
=
min
(
in_ch
//
4
,
32
),
groups_out
=
min
(
out_ch
//
4
,
32
),
overwrite_for_score_vde
=
True
,
)
)
in_ch
=
out_ch
in_ch
=
out_ch
if
all_resolutions
[
i_level
]
in
attn_resolutions
:
if
all_resolutions
[
i_level
]
in
attn_resolutions
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment