Commit 97ef5e06 authored by Patrick von Platen's avatar Patrick von Platen
Browse files

make style

parent 31be4220
......@@ -336,10 +336,7 @@ class TextualInversionDataset(Dataset):
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
(
h,
w,
) = (
(h, w,) = (
img.shape[0],
img.shape[1],
)
......
......@@ -432,10 +432,7 @@ class TextualInversionDataset(Dataset):
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
(
h,
w,
) = (
(h, w,) = (
img.shape[0],
img.shape[1],
)
......
......@@ -306,10 +306,7 @@ class TextualInversionDataset(Dataset):
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
(
h,
w,
) = (
(h, w,) = (
img.shape[0],
img.shape[1],
)
......
......@@ -94,10 +94,8 @@ class AttentionBlock(nn.Module):
if use_memory_efficient_attention_xformers:
if not is_xformers_available():
raise ModuleNotFoundError(
(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers"
),
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
......
......@@ -111,10 +111,8 @@ class CrossAttention(nn.Module):
)
elif not is_xformers_available():
raise ModuleNotFoundError(
(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers"
),
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
......
......@@ -189,11 +189,9 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep.",
)
if not self.is_scale_input_called:
......
......@@ -198,11 +198,9 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep.",
)
if not self.is_scale_input_called:
......
......@@ -537,10 +537,8 @@ class SchedulerCommonTest(unittest.TestCase):
)
self.assertTrue(
hasattr(scheduler, "scale_model_input"),
(
f"{scheduler_class} does not implement a required class method `scale_model_input(sample,"
" timestep)`"
),
f"{scheduler_class} does not implement a required class method `scale_model_input(sample,"
" timestep)`",
)
self.assertTrue(
hasattr(scheduler, "step"),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment