Unverified Commit 94566e6d authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

update mid block (#70)

* update mid block

* finish mid block
parent 4e267493
import math import math
from inspect import isfunction
import torch import torch
import torch.nn.functional as F
from torch import nn from torch import nn
...@@ -43,18 +45,16 @@ class AttentionBlock(nn.Module): ...@@ -43,18 +45,16 @@ class AttentionBlock(nn.Module):
self, self,
channels, channels,
num_heads=1, num_heads=1,
num_head_channels=-1, num_head_channels=None,
num_groups=32, num_groups=32,
use_checkpoint=False,
encoder_channels=None, encoder_channels=None,
use_new_attention_order=False, # TODO(Patrick) -> is never used, maybe delete?
overwrite_qkv=False, overwrite_qkv=False,
overwrite_linear=False, overwrite_linear=False,
rescale_output_factor=1.0, rescale_output_factor=1.0,
): ):
super().__init__() super().__init__()
self.channels = channels self.channels = channels
if num_head_channels == -1: if num_head_channels is None:
self.num_heads = num_heads self.num_heads = num_heads
else: else:
assert ( assert (
...@@ -62,7 +62,6 @@ class AttentionBlock(nn.Module): ...@@ -62,7 +62,6 @@ class AttentionBlock(nn.Module):
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels self.num_heads = channels // num_head_channels
self.use_checkpoint = use_checkpoint
self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-5, affine=True) self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-5, affine=True)
self.qkv = nn.Conv1d(channels, channels * 3, 1) self.qkv = nn.Conv1d(channels, channels * 3, 1)
self.n_heads = self.num_heads self.n_heads = self.num_heads
...@@ -160,115 +159,135 @@ class AttentionBlock(nn.Module): ...@@ -160,115 +159,135 @@ class AttentionBlock(nn.Module):
return result return result
# unet_score_estimation.py class SpatialTransformer(nn.Module):
# class AttnBlockpp(nn.Module): """
# """Channel-wise self-attention block. Modified from DDPM.""" Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
# standard transformer action. Finally, reshape to image
# def __init__( """
# self,
# channels, def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
# skip_rescale=False, super().__init__()
# init_scale=0.0, self.in_channels = in_channels
# num_heads=1, inner_dim = n_heads * d_head
# num_head_channels=-1, self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
# use_checkpoint=False,
# encoder_channels=None, self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
# use_new_attention_order=False, # TODO(Patrick) -> is never used, maybe delete?
# overwrite_qkv=False, self.transformer_blocks = nn.ModuleList(
# overwrite_from_grad_tts=False, [
# ): BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
# super().__init__() for d in range(depth)
# num_groups = min(channels // 4, 32) ]
# self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6) )
# self.NIN_0 = NIN(channels, channels)
# self.NIN_1 = NIN(channels, channels) self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
# self.NIN_2 = NIN(channels, channels)
# self.NIN_3 = NIN(channels, channels, init_scale=init_scale) def forward(self, x, context=None):
# self.skip_rescale = skip_rescale # note: if no context is given, cross-attention defaults to self-attention
# b, c, h, w = x.shape
# self.channels = channels x_in = x
# if num_head_channels == -1: x = self.norm(x)
# self.num_heads = num_heads x = self.proj_in(x)
# else: x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
# assert ( for block in self.transformer_blocks:
# channels % num_head_channels == 0 x = block(x, context=context)
# ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
# self.num_heads = channels // num_head_channels x = self.proj_out(x)
# return x + x_in
# self.use_checkpoint = use_checkpoint
# self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
# self.qkv = nn.Conv1d(channels, channels * 3, 1) class BasicTransformerBlock(nn.Module):
# self.n_heads = self.num_heads def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
# super().__init__()
# self.proj_out = zero_module(nn.Conv1d(channels, channels, 1)) self.attn1 = CrossAttention(
# query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
# self.is_weight_set = False ) # is a self-attention
# self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
# def set_weights(self): self.attn2 = CrossAttention(
# self.qkv.weight.data = torch.concat([self.NIN_0.W.data.T, self.NIN_1.W.data.T, self.NIN_2.W.data.T], dim=0)[:, :, None] query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
# self.qkv.bias.data = torch.concat([self.NIN_0.b.data, self.NIN_1.b.data, self.NIN_2.b.data], dim=0) ) # is self-attn if context is none
# self.norm1 = nn.LayerNorm(dim)
# self.proj_out.weight.data = self.NIN_3.W.data.T[:, :, None] self.norm2 = nn.LayerNorm(dim)
# self.proj_out.bias.data = self.NIN_3.b.data self.norm3 = nn.LayerNorm(dim)
# self.checkpoint = checkpoint
# self.norm.weight.data = self.GroupNorm_0.weight.data
# self.norm.bias.data = self.GroupNorm_0.bias.data def forward(self, x, context=None):
# x = self.attn1(self.norm1(x)) + x
# def forward(self, x): x = self.attn2(self.norm2(x), context=context) + x
# if not self.is_weight_set: x = self.ff(self.norm3(x)) + x
# self.set_weights() return x
# self.is_weight_set = True
#
# B, C, H, W = x.shape class CrossAttention(nn.Module):
# h = self.GroupNorm_0(x) def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
# q = self.NIN_0(h) super().__init__()
# k = self.NIN_1(h) inner_dim = dim_head * heads
# v = self.NIN_2(h) context_dim = default(context_dim, query_dim)
#
# w = torch.einsum("bchw,bcij->bhwij", q, k) * (int(C) ** (-0.5)) self.scale = dim_head**-0.5
# w = torch.reshape(w, (B, H, W, H * W)) self.heads = heads
# w = F.softmax(w, dim=-1)
# w = torch.reshape(w, (B, H, W, H, W)) self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
# h = torch.einsum("bhwij,bcij->bchw", w, v) self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
# h = self.NIN_3(h) self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
#
# if not self.skip_rescale: self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
# result = x + h
# else: def reshape_heads_to_batch_dim(self, tensor):
# result = (x + h) / np.sqrt(2.0) batch_size, seq_len, dim = tensor.shape
# head_size = self.heads
# result = self.forward_2(x) tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
# tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
# return result return tensor
#
# def forward_2(self, x, encoder_out=None): def reshape_batch_dim_to_heads(self, tensor):
# b, c, *spatial = x.shape batch_size, seq_len, dim = tensor.shape
# hid_states = self.norm(x).view(b, c, -1) head_size = self.heads
# tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
# qkv = self.qkv(hid_states) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
# bs, width, length = qkv.shape return tensor
# assert width % (3 * self.n_heads) == 0
# ch = width // (3 * self.n_heads) def forward(self, x, context=None, mask=None):
# q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) batch_size, sequence_length, dim = x.shape
#
# if encoder_out is not None: h = self.heads
# encoder_kv = self.encoder_kv(encoder_out)
# assert encoder_kv.shape[1] == self.n_heads * ch * 2 q = self.to_q(x)
# ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1) context = default(context, x)
# k = torch.cat([ek, k], dim=-1) k = self.to_k(context)
# v = torch.cat([ev, v], dim=-1) v = self.to_v(context)
#
# scale = 1 / math.sqrt(math.sqrt(ch)) q = self.reshape_heads_to_batch_dim(q)
# weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards k = self.reshape_heads_to_batch_dim(k)
# weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) v = self.reshape_heads_to_batch_dim(v)
#
# a = torch.einsum("bts,bcs->bct", weight, v) sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
# h = a.reshape(bs, -1, length)
# if exists(mask):
# h = self.proj_out(h) mask = mask.reshape(batch_size, -1)
# h = h.reshape(b, c, *spatial) max_neg_value = -torch.finfo(sim.dtype).max
# mask = mask[:, None, :].repeat(h, 1, 1)
# return (x + h) / np.sqrt(2.0) sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = torch.einsum("b i j, b j d -> b i d", attn, v)
out = self.reshape_batch_dim_to_heads(out)
return self.to_out(out)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
def forward(self, x):
return self.net(x)
# TODO(Patrick) - this can and should be removed # TODO(Patrick) - this can and should be removed
...@@ -287,3 +306,24 @@ class NIN(nn.Module): ...@@ -287,3 +306,24 @@ class NIN(nn.Module):
super().__init__() super().__init__()
self.W = nn.Parameter(torch.zeros(in_dim, num_units), requires_grad=True) self.W = nn.Parameter(torch.zeros(in_dim, num_units), requires_grad=True)
self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
...@@ -23,6 +23,7 @@ from ..modeling_utils import ModelMixin ...@@ -23,6 +23,7 @@ from ..modeling_utils import ModelMixin
from .attention import AttentionBlock from .attention import AttentionBlock
from .embeddings import get_timestep_embedding from .embeddings import get_timestep_embedding
from .resnet import Downsample2D, ResnetBlock2D, Upsample2D from .resnet import Downsample2D, ResnetBlock2D, Upsample2D
from .unet_new import UNetMidBlock2D
def nonlinearity(x): def nonlinearity(x):
...@@ -105,13 +106,8 @@ class UNetModel(ModelMixin, ConfigMixin): ...@@ -105,13 +106,8 @@ class UNetModel(ModelMixin, ConfigMixin):
self.down.append(down) self.down.append(down)
# middle # middle
self.mid = nn.Module() self.mid = UNetMidBlock2D(
self.mid.block_1 = ResnetBlock2D( in_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, overwrite_qkv=True, overwrite_unet=True
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
)
self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True)
self.mid.block_2 = ResnetBlock2D(
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
) )
# upsampling # upsampling
...@@ -171,10 +167,10 @@ class UNetModel(ModelMixin, ConfigMixin): ...@@ -171,10 +167,10 @@ class UNetModel(ModelMixin, ConfigMixin):
hs.append(self.down[i_level].downsample(hs[-1])) hs.append(self.down[i_level].downsample(hs[-1]))
# middle # middle
h = hs[-1] h = self.mid(hs[-1], temb)
h = self.mid.block_1(h, temb) # h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h) # h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb) # h = self.mid.block_2(h, temb)
# upsampling # upsampling
for i_level in reversed(range(self.num_resolutions)): for i_level in reversed(range(self.num_resolutions)):
......
...@@ -7,6 +7,7 @@ from ..modeling_utils import ModelMixin ...@@ -7,6 +7,7 @@ from ..modeling_utils import ModelMixin
from .attention import AttentionBlock from .attention import AttentionBlock
from .embeddings import get_timestep_embedding from .embeddings import get_timestep_embedding
from .resnet import Downsample2D, ResnetBlock2D, Upsample2D from .resnet import Downsample2D, ResnetBlock2D, Upsample2D
from .unet_new import UNetMidBlock2D
def convert_module_to_f16(l): def convert_module_to_f16(l):
...@@ -193,7 +194,6 @@ class GlideUNetModel(ModelMixin, ConfigMixin): ...@@ -193,7 +194,6 @@ class GlideUNetModel(ModelMixin, ConfigMixin):
layers.append( layers.append(
AttentionBlock( AttentionBlock(
ch, ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads, num_heads=num_heads,
num_head_channels=num_head_channels, num_head_channels=num_head_channels,
encoder_channels=transformer_dim, encoder_channels=transformer_dim,
...@@ -226,6 +226,20 @@ class GlideUNetModel(ModelMixin, ConfigMixin): ...@@ -226,6 +226,20 @@ class GlideUNetModel(ModelMixin, ConfigMixin):
ds *= 2 ds *= 2
self._feature_size += ch self._feature_size += ch
self.mid = UNetMidBlock2D(
in_channels=ch,
dropout=dropout,
temb_channels=time_embed_dim,
resnet_eps=1e-5,
resnet_act_fn="silu",
resnet_time_scale_shift="scale_shift" if use_scale_shift_norm else "default",
attn_num_heads=num_heads,
attn_num_head_channels=num_head_channels,
attn_encoder_channels=transformer_dim,
)
# TODO(Patrick) - delete after weight conversion
# init to be able to overwrite `self.mid`
self.middle_block = TimestepEmbedSequential( self.middle_block = TimestepEmbedSequential(
ResnetBlock2D( ResnetBlock2D(
in_channels=ch, in_channels=ch,
...@@ -238,7 +252,6 @@ class GlideUNetModel(ModelMixin, ConfigMixin): ...@@ -238,7 +252,6 @@ class GlideUNetModel(ModelMixin, ConfigMixin):
), ),
AttentionBlock( AttentionBlock(
ch, ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads, num_heads=num_heads,
num_head_channels=num_head_channels, num_head_channels=num_head_channels,
encoder_channels=transformer_dim, encoder_channels=transformer_dim,
...@@ -253,6 +266,10 @@ class GlideUNetModel(ModelMixin, ConfigMixin): ...@@ -253,6 +266,10 @@ class GlideUNetModel(ModelMixin, ConfigMixin):
overwrite_for_glide=True, overwrite_for_glide=True,
), ),
) )
self.mid.resnet_1 = self.middle_block[0]
self.mid.attn = self.middle_block[1]
self.mid.resnet_2 = self.middle_block[2]
self._feature_size += ch self._feature_size += ch
self.output_blocks = nn.ModuleList([]) self.output_blocks = nn.ModuleList([])
...@@ -276,7 +293,6 @@ class GlideUNetModel(ModelMixin, ConfigMixin): ...@@ -276,7 +293,6 @@ class GlideUNetModel(ModelMixin, ConfigMixin):
layers.append( layers.append(
AttentionBlock( AttentionBlock(
ch, ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample, num_heads=num_heads_upsample,
num_head_channels=num_head_channels, num_head_channels=num_head_channels,
encoder_channels=transformer_dim, encoder_channels=transformer_dim,
...@@ -343,7 +359,7 @@ class GlideUNetModel(ModelMixin, ConfigMixin): ...@@ -343,7 +359,7 @@ class GlideUNetModel(ModelMixin, ConfigMixin):
for module in self.input_blocks: for module in self.input_blocks:
h = module(h, emb) h = module(h, emb)
hs.append(h) hs.append(h)
h = self.middle_block(h, emb) h = self.mid(h, emb)
for module in self.output_blocks: for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1) h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb) h = module(h, emb)
...@@ -438,7 +454,7 @@ class GlideTextToImageUNetModel(GlideUNetModel): ...@@ -438,7 +454,7 @@ class GlideTextToImageUNetModel(GlideUNetModel):
for module in self.input_blocks: for module in self.input_blocks:
h = module(h, emb, transformer_out) h = module(h, emb, transformer_out)
hs.append(h) hs.append(h)
h = self.middle_block(h, emb, transformer_out) h = self.mid(h, emb, transformer_out)
for module in self.output_blocks: for module in self.output_blocks:
other = hs.pop() other = hs.pop()
h = torch.cat([h, other], dim=1) h = torch.cat([h, other], dim=1)
......
...@@ -133,6 +133,8 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin): ...@@ -133,6 +133,8 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin):
overwrite_for_grad_tts=True, overwrite_for_grad_tts=True,
) )
# self.mid = UNetMidBlock2D
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])): for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
self.ups.append( self.ups.append(
torch.nn.ModuleList( torch.nn.ModuleList(
......
...@@ -11,6 +11,7 @@ from ..modeling_utils import ModelMixin ...@@ -11,6 +11,7 @@ from ..modeling_utils import ModelMixin
from .attention import AttentionBlock from .attention import AttentionBlock
from .embeddings import get_timestep_embedding from .embeddings import get_timestep_embedding
from .resnet import Downsample2D, ResnetBlock2D, Upsample2D from .resnet import Downsample2D, ResnetBlock2D, Upsample2D
from .unet_new import UNetMidBlock2D
# from .resnet import ResBlock # from .resnet import ResBlock
...@@ -239,14 +240,12 @@ class UNetLDMModel(ModelMixin, ConfigMixin): ...@@ -239,14 +240,12 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
conv_resample=conv_resample, conv_resample=conv_resample,
dims=dims, dims=dims,
num_classes=num_classes, num_classes=num_classes,
use_checkpoint=use_checkpoint,
use_fp16=use_fp16, use_fp16=use_fp16,
num_heads=num_heads, num_heads=num_heads,
num_head_channels=num_head_channels, num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample, num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm, use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown, resblock_updown=resblock_updown,
use_new_attention_order=use_new_attention_order,
use_spatial_transformer=use_spatial_transformer, use_spatial_transformer=use_spatial_transformer,
transformer_depth=transformer_depth, transformer_depth=transformer_depth,
context_dim=context_dim, context_dim=context_dim,
...@@ -283,7 +282,6 @@ class UNetLDMModel(ModelMixin, ConfigMixin): ...@@ -283,7 +282,6 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
self.channel_mult = channel_mult self.channel_mult = channel_mult
self.conv_resample = conv_resample self.conv_resample = conv_resample
self.num_classes = num_classes self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype_ = torch.float16 if use_fp16 else torch.float32 self.dtype_ = torch.float16 if use_fp16 else torch.float32
self.num_heads = num_heads self.num_heads = num_heads
self.num_head_channels = num_head_channels self.num_head_channels = num_head_channels
...@@ -333,10 +331,8 @@ class UNetLDMModel(ModelMixin, ConfigMixin): ...@@ -333,10 +331,8 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
layers.append( layers.append(
AttentionBlock( AttentionBlock(
ch, ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads, num_heads=num_heads,
num_head_channels=dim_head, num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) )
if not use_spatial_transformer if not use_spatial_transformer
else SpatialTransformer( else SpatialTransformer(
...@@ -366,6 +362,25 @@ class UNetLDMModel(ModelMixin, ConfigMixin): ...@@ -366,6 +362,25 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
if legacy: if legacy:
# num_heads = 1 # num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if dim_head < 0:
dim_head = None
self.mid = UNetMidBlock2D(
in_channels=ch,
dropout=dropout,
temb_channels=time_embed_dim,
resnet_eps=1e-5,
resnet_act_fn="silu",
resnet_time_scale_shift="scale_shift" if use_scale_shift_norm else "default",
attention_layer_type="self" if not use_spatial_transformer else "spatial",
attn_num_heads=num_heads,
attn_num_head_channels=dim_head,
attn_depth=transformer_depth,
attn_encoder_channels=context_dim,
)
# TODO(Patrick) - delete after weight conversion
# init to be able to overwrite `self.mid`
self.middle_block = TimestepEmbedSequential( self.middle_block = TimestepEmbedSequential(
ResnetBlock2D( ResnetBlock2D(
in_channels=ch, in_channels=ch,
...@@ -378,10 +393,8 @@ class UNetLDMModel(ModelMixin, ConfigMixin): ...@@ -378,10 +393,8 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
), ),
AttentionBlock( AttentionBlock(
ch, ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads, num_heads=num_heads,
num_head_channels=dim_head, num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) )
if not use_spatial_transformer if not use_spatial_transformer
else SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim), else SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim),
...@@ -395,6 +408,10 @@ class UNetLDMModel(ModelMixin, ConfigMixin): ...@@ -395,6 +408,10 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
overwrite_for_ldm=True, overwrite_for_ldm=True,
), ),
) )
self.mid.resnet_1 = self.middle_block[0]
self.mid.attn = self.middle_block[1]
self.mid.resnet_2 = self.middle_block[2]
self._feature_size += ch self._feature_size += ch
self.output_blocks = nn.ModuleList([]) self.output_blocks = nn.ModuleList([])
...@@ -425,10 +442,8 @@ class UNetLDMModel(ModelMixin, ConfigMixin): ...@@ -425,10 +442,8 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
layers.append( layers.append(
AttentionBlock( AttentionBlock(
ch, ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample, num_heads=num_heads_upsample,
num_head_channels=dim_head, num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) )
if not use_spatial_transformer if not use_spatial_transformer
else SpatialTransformer( else SpatialTransformer(
...@@ -493,7 +508,7 @@ class UNetLDMModel(ModelMixin, ConfigMixin): ...@@ -493,7 +508,7 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
for module in self.input_blocks: for module in self.input_blocks:
h = module(h, emb, context) h = module(h, emb, context)
hs.append(h) hs.append(h)
h = self.middle_block(h, emb, context) h = self.mid(h, emb, context)
for module in self.output_blocks: for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1) h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context) h = module(h, emb, context)
......
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torch import nn
from .attention import AttentionBlock, SpatialTransformer
from .resnet import ResnetBlock2D
class UNetMidBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
attention_layer_type: str = "self",
attn_num_heads=1,
attn_num_head_channels=None,
attn_encoder_channels=None,
attn_dim_head=None,
attn_depth=None,
output_scale_factor=1.0,
overwrite_qkv=False,
overwrite_unet=False,
):
super().__init__()
self.resnet_1 = ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
)
if attention_layer_type == "self":
self.attn = AttentionBlock(
in_channels,
num_heads=attn_num_heads,
num_head_channels=attn_num_head_channels,
encoder_channels=attn_encoder_channels,
overwrite_qkv=overwrite_qkv,
rescale_output_factor=output_scale_factor,
)
elif attention_layer_type == "spatial":
self.attn = (
SpatialTransformer(
in_channels,
attn_num_heads,
attn_num_head_channels,
depth=attn_depth,
context_dim=attn_encoder_channels,
),
)
self.resnet_2 = ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
)
# TODO(Patrick) - delete all of the following code
self.is_overwritten = False
self.overwrite_unet = overwrite_unet
if self.overwrite_unet:
block_in = in_channels
self.temb_ch = temb_channels
self.block_1 = ResnetBlock2D(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
eps=resnet_eps,
)
self.attn_1 = AttentionBlock(
block_in,
num_heads=attn_num_heads,
num_head_channels=attn_num_head_channels,
encoder_channels=attn_encoder_channels,
overwrite_qkv=True,
)
self.block_2 = ResnetBlock2D(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
eps=resnet_eps,
)
def forward(self, hidden_states, temb=None, encoder_states=None):
if not self.is_overwritten and self.overwrite_unet:
self.resnet_1 = self.block_1
self.attn = self.attn_1
self.resnet_2 = self.block_2
self.is_overwritten = True
hidden_states = self.resnet_1(hidden_states, temb)
if encoder_states is None:
hidden_states = self.attn(hidden_states)
else:
hidden_states = self.attn(hidden_states, encoder_states)
hidden_states = self.resnet_2(hidden_states, temb)
return hidden_states
...@@ -27,6 +27,7 @@ from ..modeling_utils import ModelMixin ...@@ -27,6 +27,7 @@ from ..modeling_utils import ModelMixin
from .attention import AttentionBlock from .attention import AttentionBlock
from .embeddings import GaussianFourierProjection, get_timestep_embedding from .embeddings import GaussianFourierProjection, get_timestep_embedding
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
from .unet_new import UNetMidBlock2D
class Combine(nn.Module): class Combine(nn.Module):
...@@ -214,6 +215,16 @@ class NCSNpp(ModelMixin, ConfigMixin): ...@@ -214,6 +215,16 @@ class NCSNpp(ModelMixin, ConfigMixin):
hs_c.append(in_ch) hs_c.append(in_ch)
# mid
self.mid = UNetMidBlock2D(
in_channels=in_ch,
temb_channels=4 * nf,
output_scale_factor=math.sqrt(2.0),
resnet_act_fn="silu",
resnet_groups=min(in_ch // 4, 32),
dropout=dropout,
)
in_ch = hs_c[-1] in_ch = hs_c[-1]
modules.append( modules.append(
ResnetBlock2D( ResnetBlock2D(
...@@ -238,6 +249,9 @@ class NCSNpp(ModelMixin, ConfigMixin): ...@@ -238,6 +249,9 @@ class NCSNpp(ModelMixin, ConfigMixin):
overwrite_for_score_vde=True, overwrite_for_score_vde=True,
) )
) )
self.mid.resnet_1 = modules[len(modules) - 3]
self.mid.attn = modules[len(modules) - 2]
self.mid.resnet_2 = modules[len(modules) - 1]
pyramid_ch = 0 pyramid_ch = 0
# Upsampling block # Upsampling block
...@@ -378,13 +392,16 @@ class NCSNpp(ModelMixin, ConfigMixin): ...@@ -378,13 +392,16 @@ class NCSNpp(ModelMixin, ConfigMixin):
hs.append(h) hs.append(h)
h = hs[-1] # h = hs[-1]
h = modules[m_idx](h, temb) # h = modules[m_idx](h, temb)
m_idx += 1 # m_idx += 1
h = modules[m_idx](h) # h = modules[m_idx](h)
m_idx += 1 # m_idx += 1
h = modules[m_idx](h, temb) # h = modules[m_idx](h, temb)
m_idx += 1 # m_idx += 1
h = self.mid(h, temb)
m_idx += 3
pyramid = None pyramid = None
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment