Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
8841d0d1
Commit
8841d0d1
authored
Jun 09, 2022
by
Patrick von Platen
Browse files
improve ddim comments
parent
f035fbfb
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
46 additions
and
27 deletions
+46
-27
models/vision/ddim/modeling_ddim.py
models/vision/ddim/modeling_ddim.py
+46
-27
No files found.
models/vision/ddim/modeling_ddim.py
View file @
8841d0d1
...
...
@@ -34,49 +34,68 @@ class DDIM(DiffusionPipeline):
inference_step_times
=
range
(
0
,
num_trained_timesteps
,
num_trained_timesteps
//
num_inference_steps
)
self
.
unet
.
to
(
torch_device
)
# Sample gaussian noise to begin loop
image
=
self
.
noise_scheduler
.
sample_noise
(
(
batch_size
,
self
.
unet
.
in_channels
,
self
.
unet
.
resolution
,
self
.
unet
.
resolution
),
device
=
torch_device
,
generator
=
generator
,
)
# See formulas (9), (10) and (7) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_image -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_image_direction -> "direction pointingc to x_t"
# - pred_prev_image -> "x_t-1"
for
t
in
tqdm
.
tqdm
(
reversed
(
range
(
num_inference_steps
)),
total
=
num_inference_steps
):
# get actual t and t-1
# 1. predict noise residual
with
torch
.
no_grad
():
pred_noise_t
=
self
.
unet
(
image
,
inference_step_times
[
t
])
# 2. get actual t and t-1
train_step
=
inference_step_times
[
t
]
prev_train_step
=
inference_step_times
[
t
-
1
]
if
t
>
0
else
-
1
# compute alphas
#
3.
compute alphas
, betas
alpha_prod_t
=
self
.
noise_scheduler
.
get_alpha_prod
(
train_step
)
alpha_prod_t_prev
=
self
.
noise_scheduler
.
get_alpha_prod
(
prev_train_step
)
alpha_prod_t_rsqrt
=
1
/
alpha_prod_t
.
sqrt
()
alpha_prod_t_prev_rsqrt
=
1
/
alpha_prod_t_prev
.
sqrt
()
beta_prod_t_sqrt
=
(
1
-
alpha_prod_t
).
sqrt
()
beta_prod_t_prev_sqrt
=
(
1
-
alpha_prod_t_prev
).
sqrt
()
# compute relevant coefficients
coeff_1
=
(
(
alpha_prod_t_prev
-
alpha_prod_t
).
sqrt
()
*
alpha_prod_t_prev_rsqrt
*
beta_prod_t_prev_sqrt
/
beta_prod_t_sqrt
*
eta
)
coeff_2
=
((
1
-
alpha_prod_t_prev
)
-
coeff_1
**
2
).
sqrt
()
# model forward
with
torch
.
no_grad
():
noise_residual
=
self
.
unet
(
image
,
train_step
)
beta_prod_t
=
(
1
-
alpha_prod_t
)
beta_prod_t_prev
=
(
1
-
alpha_prod_t_prev
)
# 4. Compute predicted previous image from predicted noise
# predict mean of prev image
pred_mean
=
alpha_prod_t_rsqrt
*
(
image
-
beta_prod_t_sqrt
*
noise_residual
)
pred_mean
=
torch
.
clamp
(
pred_mean
,
-
1
,
1
)
pred_mean
=
(
1
/
alpha_prod_t_prev_rsqrt
)
*
pred_mean
+
coeff_2
*
noise_residual
# First: compute predicted original image from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_image
=
(
image
-
beta_prod_t
.
sqrt
()
*
pred_noise_t
)
/
alpha_prod_t
.
sqrt
()
# if eta > 0.0 add noise. Note eta = 1.0 essentially corresponds to DDPM
# Second: Clip "predicted x_0"
pred_original_image
=
torch
.
clamp
(
pred_original_image
,
-
1
,
1
)
# Third: Compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
std_dev_t
=
(
beta_prod_t_prev
/
beta_prod_t
).
sqrt
()
*
(
1
-
alpha_prod_t
/
alpha_prod_t_prev
).
sqrt
()
std_dev_t
=
eta
*
std_dev_t
# Fourth: Compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_image_direction
=
(
1
-
alpha_prod_t_prev
-
std_dev_t
**
2
).
sqrt
()
*
pred_noise_t
# Fifth: Compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_prev_image
=
alpha_prod_t_prev
.
sqrt
()
*
pred_original_image
+
pred_image_direction
# 5. Sample x_t-1 image optionally if η > 0.0 by adding noise to pred_prev_image
# Note: eta = 1.0 essentially corresponds to DDPM
if
eta
>
0.0
:
noise
=
self
.
noise_scheduler
.
sample_noise
(
image
.
shape
,
device
=
image
.
device
,
generator
=
generator
)
image
=
pred_
mean
+
coeff_1
*
noise
prev_
image
=
pred_
prev_image
+
std_dev_t
*
noise
else
:
image
=
pred_mean
prev_image
=
pred_prev_image
# 6. Set current image to prev_image: x_t -> x_t-1
image
=
prev_image
return
image
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment