Unverified Commit 86294d3c authored by co63oc's avatar co63oc Committed by GitHub
Browse files

Fix typos in docs and comments (#11416)



* Fix typos in docs and comments

* Apply style fixes

---------
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
Co-authored-by: default avatargithub-actions[bot] <github-actions[bot]@users.noreply.github.com>
parent d70f8ee1
......@@ -739,7 +739,7 @@ class StableDiffusionControlNetXSPipeline(
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeine class.
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
......
......@@ -880,7 +880,7 @@ class StableDiffusionXLControlNetXSPipeline(
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeine class.
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
......
......@@ -97,7 +97,7 @@ class DanceDiffusionPipeline(DiffusionPipeline):
for i, audio in enumerate(audios):
write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose())
# To dislay in google colab
# To display in google colab
import IPython.display as ipd
for audio in audios:
......
......@@ -509,7 +509,8 @@ class StableDiffusionModelEditingPipeline(
The destination prompt. Must contain all words from `source_prompt` with additional ones to specify the
target edit.
lamb (`float`, *optional*, defaults to 0.1):
The lambda parameter specifying the regularization intesity. Smaller values increase the editing power.
The lambda parameter specifying the regularization intensity. Smaller values increase the editing
power.
restart_params (`bool`, *optional*, defaults to True):
Restart the model parameters to their pre-trained version before editing. This is done to avoid edit
compounding. When it is `False`, edits accumulate.
......
......@@ -1097,7 +1097,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
added_cond_kwargs: (`dict`, *optional*):
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
are passed along to the UNet blocks.
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
......
......@@ -478,7 +478,7 @@ class AnimateDiffFreeNoiseMixin:
Must be one of ["shuffle_context", "repeat_context", "random"].
- "shuffle_context"
Shuffles a fixed batch of `context_length` latents to create a final latent of size
`num_frames`. This is usually the best setting for most generation scenarious. However, there
`num_frames`. This is usually the best setting for most generation scenarios. However, there
might be visible repetition noticeable in the kinds of motion/animation generated.
- "repeated_context"
Repeats a fixed batch of `context_length` latents to create a final latent of size
......
......@@ -462,7 +462,7 @@ class I2VGenXLPipeline(
image_latents = image_latents.unsqueeze(2)
# Append a position mask for each subsequent frame
# after the intial image latent frame
# after the initial image latent frame
frame_position_mask = []
for frame_idx in range(num_frames - 1):
scale = (frame_idx + 1) / (num_frames - 1)
......
......@@ -496,7 +496,7 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
"As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. "
"This way, Kandinsky's masking behavior is aligned with Stable Diffusion. "
"THIS means that you HAVE to invert the input mask to have the same behavior as before as explained in https://github.com/huggingface/diffusers/pull/4207. "
"This warning will be surpressed after the first inference call and will be removed in diffusers>0.23.0"
"This warning will be suppressed after the first inference call and will be removed in diffusers>0.23.0"
)
self._warn_has_been_called = True
......
......@@ -386,7 +386,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
"As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. "
"This way, Kandinsky's masking behavior is aligned with Stable Diffusion. "
"THIS means that you HAVE to invert the input mask to have the same behavior as before as explained in https://github.com/huggingface/diffusers/pull/4207. "
"This warning will be surpressed after the first inference call and will be removed in diffusers>0.23.0"
"This warning will be suppressed after the first inference call and will be removed in diffusers>0.23.0"
)
self._warn_has_been_called = True
......
......@@ -668,7 +668,7 @@ class Embedding(torch.nn.Module):
# Embeddings.
words_embeddings = self.word_embeddings(input_ids)
embeddings = words_embeddings
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
# Data format change to avoid explicit transposes : [b s h] --> [s b h].
embeddings = embeddings.transpose(0, 1).contiguous()
# If the input flag for fp32 residual connection is set, convert for float.
if self.fp32_residual_connection:
......
......@@ -1458,7 +1458,7 @@ def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, e
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
# modifed so that updated xtm1 is returned as well (to avoid error accumulation)
# modified so that updated xtm1 is returned as well (to avoid error accumulation)
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
if variance > 0.0:
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
......
......@@ -1742,7 +1742,7 @@ def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, e
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
# modifed so that updated xtm1 is returned as well (to avoid error accumulation)
# modified so that updated xtm1 is returned as well (to avoid error accumulation)
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
if variance > 0.0:
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
......
......@@ -426,7 +426,7 @@ class MarigoldImageProcessor(ConfigMixin):
if isinstance(img, np.ndarray):
img = torch.from_numpy(img)
if not torch.is_floating_point(img):
raise ValueError(f"{prefix}: unexected dtype={img.dtype}.")
raise ValueError(f"{prefix}: unexpected dtype={img.dtype}.")
else:
raise ValueError(f"{prefix}: unexpected type={type(img)}.")
if val_min != 0.0 or val_max != 1.0:
......@@ -464,7 +464,7 @@ class MarigoldImageProcessor(ConfigMixin):
if torch.is_tensor(img):
img = img.cpu().numpy()
if not np.issubdtype(img.dtype, np.floating):
raise ValueError(f"{prefix}: unexected dtype={img.dtype}.")
raise ValueError(f"{prefix}: unexpected dtype={img.dtype}.")
if val_min != 0.0 or val_max != 1.0:
img = (img - val_min) / (val_max - val_min)
img = (img * (2**16 - 1)).astype(np.uint16)
......
......@@ -176,7 +176,7 @@ class OmniGenPipeline(
get the continue embedding of input images by VAE
Args:
input_pixel_values: normlized pixel of input images
input_pixel_values: normalized pixel of input images
device:
Returns: torch.Tensor
"""
......
......@@ -115,7 +115,7 @@ EXAMPLE_DOC_STRING = """
... with torch.no_grad(), torch.autocast("cuda"):
... depth_map = depth_estimator(image).predicted_depth
... depth_map = torch.nn.fuctional.interpolate(
... depth_map = torch.nn.functional.interpolate(
... depth_map.unsqueeze(1),
... size=(1024, 1024),
... mode="bicubic",
......
......@@ -1038,7 +1038,7 @@ class ShapERenderer(ModelMixin, ConfigMixin):
textures = _convert_srgb_to_linear(textures)
textures = textures.float()
# 3.3 augument the mesh with texture data
# 3.3 augment the mesh with texture data
assert len(textures.shape) == 3 and textures.shape[-1] == len(texture_channels), (
f"expected [meta_batch x inner_batch x texture_channels] field results, but got {textures.shape}"
)
......
......@@ -524,9 +524,9 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
latents = self.vqgan.config.scale_factor * latents
images = self.vqgan.decode(latents).sample.clamp(0, 1)
if output_type == "np":
images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesn't work
elif output_type == "pil":
images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesn't work
images = self.numpy_to_pil(images)
else:
images = latents
......
......@@ -626,11 +626,11 @@ class StableCascadePriorPipeline(DiffusionPipeline):
self.maybe_free_model_hooks()
if output_type == "np":
latents = latents.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
prompt_embeds = prompt_embeds.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
latents = latents.cpu().float().numpy() # float() as bfloat16-> numpy doesn't work
prompt_embeds = prompt_embeds.cpu().float().numpy() # float() as bfloat16-> numpy doesn't work
negative_prompt_embeds = (
negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None
) # float() as bfloat16-> numpy doesnt work
) # float() as bfloat16-> numpy doesn't work
if not return_dict:
return (
......
......@@ -1047,7 +1047,7 @@ class StableDiffusionAttendAndExcitePipeline(DiffusionPipeline, StableDiffusionM
class GaussianSmoothing(torch.nn.Module):
"""
Arguments:
Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input
Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed separately for each channel in the input
using a depthwise convolution.
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
......
......@@ -123,7 +123,7 @@ class StableDiffusionKDiffusionPipeline(
super().__init__()
logger.info(
f"{self.__class__} is an experimntal pipeline and is likely to change in the future. We recommend to use"
f"{self.__class__} is an experimental pipeline and is likely to change in the future. We recommend to use"
" this pipeline for fast experimentation / iteration if needed, but advice to rely on existing pipelines"
" as defined in https://huggingface.co/docs/diffusers/api/schedulers#implemented-schedulers for"
" production settings."
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment