Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
754fac82
Unverified
Commit
754fac82
authored
May 16, 2023
by
Laureηt
Committed by
GitHub
May 16, 2023
Browse files
[Docs] Fix incomplete docstring for resnet.py (#3438)
Fix incomplete docstrings for resnet.py
parent
17f9aed7
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
62 additions
and
24 deletions
+62
-24
src/diffusers/models/resnet.py
src/diffusers/models/resnet.py
+62
-24
No files found.
src/diffusers/models/resnet.py
View file @
754fac82
...
@@ -24,14 +24,17 @@ from .attention import AdaGroupNorm
...
@@ -24,14 +24,17 @@ from .attention import AdaGroupNorm
class
Upsample1D
(
nn
.
Module
):
class
Upsample1D
(
nn
.
Module
):
"""
"""A 1D upsampling layer with an optional convolution.
An upsampling layer with an optional convolution.
Parameters:
Parameters:
channels: channels in the inputs and outputs.
channels (`int`):
use_conv: a bool determining if a convolution is applied.
number of channels in the inputs and outputs.
use_conv_transpose:
use_conv (`bool`, default `False`):
out_channels:
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
"""
"""
def
__init__
(
self
,
channels
,
use_conv
=
False
,
use_conv_transpose
=
False
,
out_channels
=
None
,
name
=
"conv"
):
def
__init__
(
self
,
channels
,
use_conv
=
False
,
use_conv_transpose
=
False
,
out_channels
=
None
,
name
=
"conv"
):
...
@@ -62,14 +65,17 @@ class Upsample1D(nn.Module):
...
@@ -62,14 +65,17 @@ class Upsample1D(nn.Module):
class
Downsample1D
(
nn
.
Module
):
class
Downsample1D
(
nn
.
Module
):
"""
"""A 1D downsampling layer with an optional convolution.
A downsampling layer with an optional convolution.
Parameters:
Parameters:
channels: channels in the inputs and outputs.
channels (`int`):
use_conv: a bool determining if a convolution is applied.
number of channels in the inputs and outputs.
out_channels:
use_conv (`bool`, default `False`):
padding:
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
"""
"""
def
__init__
(
self
,
channels
,
use_conv
=
False
,
out_channels
=
None
,
padding
=
1
,
name
=
"conv"
):
def
__init__
(
self
,
channels
,
use_conv
=
False
,
out_channels
=
None
,
padding
=
1
,
name
=
"conv"
):
...
@@ -93,14 +99,17 @@ class Downsample1D(nn.Module):
...
@@ -93,14 +99,17 @@ class Downsample1D(nn.Module):
class
Upsample2D
(
nn
.
Module
):
class
Upsample2D
(
nn
.
Module
):
"""
"""A 2D upsampling layer with an optional convolution.
An upsampling layer with an optional convolution.
Parameters:
Parameters:
channels: channels in the inputs and outputs.
channels (`int`):
use_conv: a bool determining if a convolution is applied.
number of channels in the inputs and outputs.
use_conv_transpose:
use_conv (`bool`, default `False`):
out_channels:
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
"""
"""
def
__init__
(
self
,
channels
,
use_conv
=
False
,
use_conv_transpose
=
False
,
out_channels
=
None
,
name
=
"conv"
):
def
__init__
(
self
,
channels
,
use_conv
=
False
,
use_conv_transpose
=
False
,
out_channels
=
None
,
name
=
"conv"
):
...
@@ -162,14 +171,17 @@ class Upsample2D(nn.Module):
...
@@ -162,14 +171,17 @@ class Upsample2D(nn.Module):
class
Downsample2D
(
nn
.
Module
):
class
Downsample2D
(
nn
.
Module
):
"""
"""A 2D downsampling layer with an optional convolution.
A downsampling layer with an optional convolution.
Parameters:
Parameters:
channels: channels in the inputs and outputs.
channels (`int`):
use_conv: a bool determining if a convolution is applied.
number of channels in the inputs and outputs.
out_channels:
use_conv (`bool`, default `False`):
padding:
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
"""
"""
def
__init__
(
self
,
channels
,
use_conv
=
False
,
out_channels
=
None
,
padding
=
1
,
name
=
"conv"
):
def
__init__
(
self
,
channels
,
use_conv
=
False
,
out_channels
=
None
,
padding
=
1
,
name
=
"conv"
):
...
@@ -209,6 +221,19 @@ class Downsample2D(nn.Module):
...
@@ -209,6 +221,19 @@ class Downsample2D(nn.Module):
class
FirUpsample2D
(
nn
.
Module
):
class
FirUpsample2D
(
nn
.
Module
):
"""A 2D FIR upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
kernel for the FIR filter.
"""
def
__init__
(
self
,
channels
=
None
,
out_channels
=
None
,
use_conv
=
False
,
fir_kernel
=
(
1
,
3
,
3
,
1
)):
def
__init__
(
self
,
channels
=
None
,
out_channels
=
None
,
use_conv
=
False
,
fir_kernel
=
(
1
,
3
,
3
,
1
)):
super
().
__init__
()
super
().
__init__
()
out_channels
=
out_channels
if
out_channels
else
channels
out_channels
=
out_channels
if
out_channels
else
channels
...
@@ -309,6 +334,19 @@ class FirUpsample2D(nn.Module):
...
@@ -309,6 +334,19 @@ class FirUpsample2D(nn.Module):
class
FirDownsample2D
(
nn
.
Module
):
class
FirDownsample2D
(
nn
.
Module
):
"""A 2D FIR downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
kernel for the FIR filter.
"""
def
__init__
(
self
,
channels
=
None
,
out_channels
=
None
,
use_conv
=
False
,
fir_kernel
=
(
1
,
3
,
3
,
1
)):
def
__init__
(
self
,
channels
=
None
,
out_channels
=
None
,
use_conv
=
False
,
fir_kernel
=
(
1
,
3
,
3
,
1
)):
super
().
__init__
()
super
().
__init__
()
out_channels
=
out_channels
if
out_channels
else
channels
out_channels
=
out_channels
if
out_channels
else
channels
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment