Unverified Commit 6b04d61c authored by Kashif Rasul's avatar Kashif Rasul Committed by GitHub
Browse files

[Styling] stylify using ruff (#5841)

* ruff format

* not need to use doc-builder's black styling as the doc is styled in ruff

* make fix-copies

* comment

* use run_ruff
parent 9c7f7fc4
...@@ -181,6 +181,7 @@ class AutoPipelineForText2Image(ConfigMixin): ...@@ -181,6 +181,7 @@ class AutoPipelineForText2Image(ConfigMixin):
diffusion pipeline's components. diffusion pipeline's components.
""" """
config_name = "model_index.json" config_name = "model_index.json"
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
...@@ -451,6 +452,7 @@ class AutoPipelineForImage2Image(ConfigMixin): ...@@ -451,6 +452,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
diffusion pipeline's components. diffusion pipeline's components.
""" """
config_name = "model_index.json" config_name = "model_index.json"
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
...@@ -726,6 +728,7 @@ class AutoPipelineForInpainting(ConfigMixin): ...@@ -726,6 +728,7 @@ class AutoPipelineForInpainting(ConfigMixin):
diffusion pipeline's components. diffusion pipeline's components.
""" """
config_name = "model_index.json" config_name = "model_index.json"
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
......
...@@ -74,6 +74,7 @@ class ConsistencyModelPipeline(DiffusionPipeline): ...@@ -74,6 +74,7 @@ class ConsistencyModelPipeline(DiffusionPipeline):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only
compatible with [`CMStochasticIterativeScheduler`]. compatible with [`CMStochasticIterativeScheduler`].
""" """
model_cpu_offload_seq = "unet" model_cpu_offload_seq = "unet"
def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None: def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None:
......
...@@ -126,6 +126,7 @@ class StableDiffusionControlNetPipeline( ...@@ -126,6 +126,7 @@ class StableDiffusionControlNetPipeline(
feature_extractor ([`~transformers.CLIPImageProcessor`]): feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
""" """
model_cpu_offload_seq = "text_encoder->unet->vae" model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor"] _optional_components = ["safety_checker", "feature_extractor"]
_exclude_from_cpu_offload = ["safety_checker"] _exclude_from_cpu_offload = ["safety_checker"]
...@@ -886,9 +887,10 @@ class StableDiffusionControlNetPipeline( ...@@ -886,9 +887,10 @@ class StableDiffusionControlNetPipeline(
control_guidance_end = len(control_guidance_start) * [control_guidance_end] control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [ control_guidance_start, control_guidance_end = (
control_guidance_end mult * [control_guidance_start],
] mult * [control_guidance_end],
)
# 1. Check inputs. Raise error if not correct # 1. Check inputs. Raise error if not correct
self.check_inputs( self.check_inputs(
......
...@@ -160,6 +160,7 @@ class StableDiffusionControlNetImg2ImgPipeline( ...@@ -160,6 +160,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
feature_extractor ([`~transformers.CLIPImageProcessor`]): feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
""" """
model_cpu_offload_seq = "text_encoder->unet->vae" model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor"] _optional_components = ["safety_checker", "feature_extractor"]
_exclude_from_cpu_offload = ["safety_checker"] _exclude_from_cpu_offload = ["safety_checker"]
...@@ -933,9 +934,10 @@ class StableDiffusionControlNetImg2ImgPipeline( ...@@ -933,9 +934,10 @@ class StableDiffusionControlNetImg2ImgPipeline(
control_guidance_end = len(control_guidance_start) * [control_guidance_end] control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [ control_guidance_start, control_guidance_end = (
control_guidance_end mult * [control_guidance_start],
] mult * [control_guidance_end],
)
# 1. Check inputs. Raise error if not correct # 1. Check inputs. Raise error if not correct
self.check_inputs( self.check_inputs(
......
...@@ -282,6 +282,7 @@ class StableDiffusionControlNetInpaintPipeline( ...@@ -282,6 +282,7 @@ class StableDiffusionControlNetInpaintPipeline(
feature_extractor ([`~transformers.CLIPImageProcessor`]): feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
""" """
model_cpu_offload_seq = "text_encoder->unet->vae" model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor"] _optional_components = ["safety_checker", "feature_extractor"]
_exclude_from_cpu_offload = ["safety_checker"] _exclude_from_cpu_offload = ["safety_checker"]
...@@ -1142,9 +1143,10 @@ class StableDiffusionControlNetInpaintPipeline( ...@@ -1142,9 +1143,10 @@ class StableDiffusionControlNetInpaintPipeline(
control_guidance_end = len(control_guidance_start) * [control_guidance_end] control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [ control_guidance_start, control_guidance_end = (
control_guidance_end mult * [control_guidance_start],
] mult * [control_guidance_end],
)
# 1. Check inputs. Raise error if not correct # 1. Check inputs. Raise error if not correct
self.check_inputs( self.check_inputs(
......
...@@ -164,6 +164,7 @@ class StableDiffusionXLControlNetInpaintPipeline( ...@@ -164,6 +164,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
""" """
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"] _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
...@@ -1198,9 +1199,10 @@ class StableDiffusionXLControlNetInpaintPipeline( ...@@ -1198,9 +1199,10 @@ class StableDiffusionXLControlNetInpaintPipeline(
control_guidance_end = len(control_guidance_start) * [control_guidance_end] control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [ control_guidance_start, control_guidance_end = (
control_guidance_end mult * [control_guidance_start],
] mult * [control_guidance_end],
)
# # 0.0 Default height and width to unet # # 0.0 Default height and width to unet
# height = height or self.unet.config.sample_size * self.vae_scale_factor # height = height or self.unet.config.sample_size * self.vae_scale_factor
...@@ -1213,9 +1215,10 @@ class StableDiffusionXLControlNetInpaintPipeline( ...@@ -1213,9 +1215,10 @@ class StableDiffusionXLControlNetInpaintPipeline(
control_guidance_end = len(control_guidance_start) * [control_guidance_end] control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [ control_guidance_start, control_guidance_end = (
control_guidance_end mult * [control_guidance_start],
] mult * [control_guidance_end],
)
# 1. Check inputs # 1. Check inputs
self.check_inputs( self.check_inputs(
......
...@@ -139,6 +139,7 @@ class StableDiffusionXLControlNetPipeline( ...@@ -139,6 +139,7 @@ class StableDiffusionXLControlNetPipeline(
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
watermarker is used. watermarker is used.
""" """
# leave controlnet out on purpose because it iterates with unet # leave controlnet out on purpose because it iterates with unet
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"] _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
...@@ -1005,9 +1006,10 @@ class StableDiffusionXLControlNetPipeline( ...@@ -1005,9 +1006,10 @@ class StableDiffusionXLControlNetPipeline(
control_guidance_end = len(control_guidance_start) * [control_guidance_end] control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [ control_guidance_start, control_guidance_end = (
control_guidance_end mult * [control_guidance_start],
] mult * [control_guidance_end],
)
# 1. Check inputs. Raise error if not correct # 1. Check inputs. Raise error if not correct
self.check_inputs( self.check_inputs(
......
...@@ -192,6 +192,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline( ...@@ -192,6 +192,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
watermark output images. If not defined, it will default to True if the package is installed, otherwise no watermark output images. If not defined, it will default to True if the package is installed, otherwise no
watermarker will be used. watermarker will be used.
""" """
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"] _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
...@@ -1154,9 +1155,10 @@ class StableDiffusionXLControlNetImg2ImgPipeline( ...@@ -1154,9 +1155,10 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
control_guidance_end = len(control_guidance_start) * [control_guidance_end] control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [ control_guidance_start, control_guidance_end = (
control_guidance_end mult * [control_guidance_start],
] mult * [control_guidance_end],
)
# 1. Check inputs. Raise error if not correct # 1. Check inputs. Raise error if not correct
self.check_inputs( self.check_inputs(
......
...@@ -39,6 +39,7 @@ class DanceDiffusionPipeline(DiffusionPipeline): ...@@ -39,6 +39,7 @@ class DanceDiffusionPipeline(DiffusionPipeline):
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
[`IPNDMScheduler`]. [`IPNDMScheduler`].
""" """
model_cpu_offload_seq = "unet" model_cpu_offload_seq = "unet"
def __init__(self, unet, scheduler): def __init__(self, unet, scheduler):
......
...@@ -35,6 +35,7 @@ class DDIMPipeline(DiffusionPipeline): ...@@ -35,6 +35,7 @@ class DDIMPipeline(DiffusionPipeline):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`]. [`DDPMScheduler`], or [`DDIMScheduler`].
""" """
model_cpu_offload_seq = "unet" model_cpu_offload_seq = "unet"
def __init__(self, unet, scheduler): def __init__(self, unet, scheduler):
......
...@@ -35,6 +35,7 @@ class DDPMPipeline(DiffusionPipeline): ...@@ -35,6 +35,7 @@ class DDPMPipeline(DiffusionPipeline):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`]. [`DDPMScheduler`], or [`DDIMScheduler`].
""" """
model_cpu_offload_seq = "unet" model_cpu_offload_seq = "unet"
def __init__(self, unet, scheduler): def __init__(self, unet, scheduler):
......
...@@ -98,7 +98,19 @@ class IFPipeline(DiffusionPipeline, LoraLoaderMixin): ...@@ -98,7 +98,19 @@ class IFPipeline(DiffusionPipeline, LoraLoaderMixin):
watermarker: Optional[IFWatermarker] watermarker: Optional[IFWatermarker]
bad_punct_regex = re.compile( bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa ) # noqa
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"] _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
......
...@@ -122,7 +122,19 @@ class IFImg2ImgPipeline(DiffusionPipeline, LoraLoaderMixin): ...@@ -122,7 +122,19 @@ class IFImg2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
watermarker: Optional[IFWatermarker] watermarker: Optional[IFWatermarker]
bad_punct_regex = re.compile( bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa ) # noqa
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"] _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
......
...@@ -126,7 +126,19 @@ class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin): ...@@ -126,7 +126,19 @@ class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
watermarker: Optional[IFWatermarker] watermarker: Optional[IFWatermarker]
bad_punct_regex = re.compile( bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa ) # noqa
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor"] _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor"]
......
...@@ -125,7 +125,19 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin): ...@@ -125,7 +125,19 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
watermarker: Optional[IFWatermarker] watermarker: Optional[IFWatermarker]
bad_punct_regex = re.compile( bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa ) # noqa
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"] _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
......
...@@ -128,7 +128,19 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin): ...@@ -128,7 +128,19 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
watermarker: Optional[IFWatermarker] watermarker: Optional[IFWatermarker]
bad_punct_regex = re.compile( bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa ) # noqa
model_cpu_offload_seq = "text_encoder->unet" model_cpu_offload_seq = "text_encoder->unet"
......
...@@ -84,7 +84,19 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin): ...@@ -84,7 +84,19 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
watermarker: Optional[IFWatermarker] watermarker: Optional[IFWatermarker]
bad_punct_regex = re.compile( bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa ) # noqa
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"] _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
......
...@@ -43,6 +43,7 @@ class DiTPipeline(DiffusionPipeline): ...@@ -43,6 +43,7 @@ class DiTPipeline(DiffusionPipeline):
scheduler ([`DDIMScheduler`]): scheduler ([`DDIMScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
""" """
model_cpu_offload_seq = "transformer->vae" model_cpu_offload_seq = "transformer->vae"
def __init__( def __init__(
......
...@@ -115,6 +115,7 @@ class LatentConsistencyModelImg2ImgPipeline( ...@@ -115,6 +115,7 @@ class LatentConsistencyModelImg2ImgPipeline(
requires_safety_checker (`bool`, *optional*, defaults to `True`): requires_safety_checker (`bool`, *optional*, defaults to `True`):
Whether the pipeline requires a safety checker component. Whether the pipeline requires a safety checker component.
""" """
model_cpu_offload_seq = "text_encoder->unet->vae" model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor"] _optional_components = ["safety_checker", "feature_extractor"]
_exclude_from_cpu_offload = ["safety_checker"] _exclude_from_cpu_offload = ["safety_checker"]
......
...@@ -97,6 +97,7 @@ class LatentConsistencyModelPipeline( ...@@ -97,6 +97,7 @@ class LatentConsistencyModelPipeline(
requires_safety_checker (`bool`, *optional*, defaults to `True`): requires_safety_checker (`bool`, *optional*, defaults to `True`):
Whether the pipeline requires a safety checker component. Whether the pipeline requires a safety checker component.
""" """
model_cpu_offload_seq = "text_encoder->unet->vae" model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor"] _optional_components = ["safety_checker", "feature_extractor"]
_exclude_from_cpu_offload = ["safety_checker"] _exclude_from_cpu_offload = ["safety_checker"]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment