Unverified Commit 630d27fe authored by Dhruv Nair's avatar Dhruv Nair Committed by GitHub
Browse files

[Modular] More Updates for Custom Code Loading (#11969)



* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------
Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
parent f442955c
...@@ -25,7 +25,6 @@ else: ...@@ -25,7 +25,6 @@ else:
_import_structure["modular_pipeline"] = [ _import_structure["modular_pipeline"] = [
"ModularPipelineBlocks", "ModularPipelineBlocks",
"ModularPipeline", "ModularPipeline",
"PipelineBlock",
"AutoPipelineBlocks", "AutoPipelineBlocks",
"SequentialPipelineBlocks", "SequentialPipelineBlocks",
"LoopSequentialPipelineBlocks", "LoopSequentialPipelineBlocks",
...@@ -59,7 +58,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -59,7 +58,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
LoopSequentialPipelineBlocks, LoopSequentialPipelineBlocks,
ModularPipeline, ModularPipeline,
ModularPipelineBlocks, ModularPipelineBlocks,
PipelineBlock,
PipelineState, PipelineState,
SequentialPipelineBlocks, SequentialPipelineBlocks,
) )
......
...@@ -22,7 +22,7 @@ from ...models import AutoencoderKL ...@@ -22,7 +22,7 @@ from ...models import AutoencoderKL
from ...schedulers import FlowMatchEulerDiscreteScheduler from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import logging from ...utils import logging
from ...utils.torch_utils import randn_tensor from ...utils.torch_utils import randn_tensor
from ..modular_pipeline import PipelineBlock, PipelineState from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import FluxModularPipeline from .modular_pipeline import FluxModularPipeline
...@@ -231,7 +231,7 @@ def _get_initial_timesteps_and_optionals( ...@@ -231,7 +231,7 @@ def _get_initial_timesteps_and_optionals(
return timesteps, num_inference_steps, sigmas, guidance return timesteps, num_inference_steps, sigmas, guidance
class FluxInputStep(PipelineBlock): class FluxInputStep(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
...@@ -249,11 +249,6 @@ class FluxInputStep(PipelineBlock): ...@@ -249,11 +249,6 @@ class FluxInputStep(PipelineBlock):
def inputs(self) -> List[InputParam]: def inputs(self) -> List[InputParam]:
return [ return [
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"prompt_embeds", "prompt_embeds",
required=True, required=True,
...@@ -322,7 +317,7 @@ class FluxInputStep(PipelineBlock): ...@@ -322,7 +317,7 @@ class FluxInputStep(PipelineBlock):
return components, state return components, state
class FluxSetTimestepsStep(PipelineBlock): class FluxSetTimestepsStep(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
...@@ -340,14 +335,10 @@ class FluxSetTimestepsStep(PipelineBlock): ...@@ -340,14 +335,10 @@ class FluxSetTimestepsStep(PipelineBlock):
InputParam("timesteps"), InputParam("timesteps"),
InputParam("sigmas"), InputParam("sigmas"),
InputParam("guidance_scale", default=3.5), InputParam("guidance_scale", default=3.5),
InputParam("latents", type_hint=torch.Tensor),
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
InputParam("height", type_hint=int), InputParam("height", type_hint=int),
InputParam("width", type_hint=int), InputParam("width", type_hint=int),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"batch_size", "batch_size",
required=True, required=True,
...@@ -398,7 +389,7 @@ class FluxSetTimestepsStep(PipelineBlock): ...@@ -398,7 +389,7 @@ class FluxSetTimestepsStep(PipelineBlock):
return components, state return components, state
class FluxImg2ImgSetTimestepsStep(PipelineBlock): class FluxImg2ImgSetTimestepsStep(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
...@@ -420,11 +411,6 @@ class FluxImg2ImgSetTimestepsStep(PipelineBlock): ...@@ -420,11 +411,6 @@ class FluxImg2ImgSetTimestepsStep(PipelineBlock):
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
InputParam("height", type_hint=int), InputParam("height", type_hint=int),
InputParam("width", type_hint=int), InputParam("width", type_hint=int),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"batch_size", "batch_size",
required=True, required=True,
...@@ -497,7 +483,7 @@ class FluxImg2ImgSetTimestepsStep(PipelineBlock): ...@@ -497,7 +483,7 @@ class FluxImg2ImgSetTimestepsStep(PipelineBlock):
return components, state return components, state
class FluxPrepareLatentsStep(PipelineBlock): class FluxPrepareLatentsStep(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
...@@ -515,11 +501,6 @@ class FluxPrepareLatentsStep(PipelineBlock): ...@@ -515,11 +501,6 @@ class FluxPrepareLatentsStep(PipelineBlock):
InputParam("width", type_hint=int), InputParam("width", type_hint=int),
InputParam("latents", type_hint=Optional[torch.Tensor]), InputParam("latents", type_hint=Optional[torch.Tensor]),
InputParam("num_images_per_prompt", type_hint=int, default=1), InputParam("num_images_per_prompt", type_hint=int, default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"), InputParam("generator"),
InputParam( InputParam(
"batch_size", "batch_size",
...@@ -621,7 +602,7 @@ class FluxPrepareLatentsStep(PipelineBlock): ...@@ -621,7 +602,7 @@ class FluxPrepareLatentsStep(PipelineBlock):
return components, state return components, state
class FluxImg2ImgPrepareLatentsStep(PipelineBlock): class FluxImg2ImgPrepareLatentsStep(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
...@@ -639,11 +620,6 @@ class FluxImg2ImgPrepareLatentsStep(PipelineBlock): ...@@ -639,11 +620,6 @@ class FluxImg2ImgPrepareLatentsStep(PipelineBlock):
InputParam("width", type_hint=int), InputParam("width", type_hint=int),
InputParam("latents", type_hint=Optional[torch.Tensor]), InputParam("latents", type_hint=Optional[torch.Tensor]),
InputParam("num_images_per_prompt", type_hint=int, default=1), InputParam("num_images_per_prompt", type_hint=int, default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"), InputParam("generator"),
InputParam( InputParam(
"image_latents", "image_latents",
......
...@@ -22,7 +22,7 @@ from ...configuration_utils import FrozenDict ...@@ -22,7 +22,7 @@ from ...configuration_utils import FrozenDict
from ...models import AutoencoderKL from ...models import AutoencoderKL
from ...utils import logging from ...utils import logging
from ...video_processor import VaeImageProcessor from ...video_processor import VaeImageProcessor
from ..modular_pipeline import PipelineBlock, PipelineState from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
...@@ -45,7 +45,7 @@ def _unpack_latents(latents, height, width, vae_scale_factor): ...@@ -45,7 +45,7 @@ def _unpack_latents(latents, height, width, vae_scale_factor):
return latents return latents
class FluxDecodeStep(PipelineBlock): class FluxDecodeStep(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
...@@ -70,17 +70,12 @@ class FluxDecodeStep(PipelineBlock): ...@@ -70,17 +70,12 @@ class FluxDecodeStep(PipelineBlock):
InputParam("output_type", default="pil"), InputParam("output_type", default="pil"),
InputParam("height", default=1024), InputParam("height", default=1024),
InputParam("width", default=1024), InputParam("width", default=1024),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"latents", "latents",
required=True, required=True,
type_hint=torch.Tensor, type_hint=torch.Tensor,
description="The denoised latents from the denoising step", description="The denoised latents from the denoising step",
) ),
] ]
@property @property
......
...@@ -22,7 +22,7 @@ from ...utils import logging ...@@ -22,7 +22,7 @@ from ...utils import logging
from ..modular_pipeline import ( from ..modular_pipeline import (
BlockState, BlockState,
LoopSequentialPipelineBlocks, LoopSequentialPipelineBlocks,
PipelineBlock, ModularPipelineBlocks,
PipelineState, PipelineState,
) )
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
...@@ -32,7 +32,7 @@ from .modular_pipeline import FluxModularPipeline ...@@ -32,7 +32,7 @@ from .modular_pipeline import FluxModularPipeline
logger = logging.get_logger(__name__) # pylint: disable=invalid-name logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class FluxLoopDenoiser(PipelineBlock): class FluxLoopDenoiser(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
...@@ -49,11 +49,8 @@ class FluxLoopDenoiser(PipelineBlock): ...@@ -49,11 +49,8 @@ class FluxLoopDenoiser(PipelineBlock):
@property @property
def inputs(self) -> List[Tuple[str, Any]]: def inputs(self) -> List[Tuple[str, Any]]:
return [InputParam("joint_attention_kwargs")]
@property
def intermediate_inputs(self) -> List[str]:
return [ return [
InputParam("joint_attention_kwargs"),
InputParam( InputParam(
"latents", "latents",
required=True, required=True,
...@@ -113,7 +110,7 @@ class FluxLoopDenoiser(PipelineBlock): ...@@ -113,7 +110,7 @@ class FluxLoopDenoiser(PipelineBlock):
return components, block_state return components, block_state
class FluxLoopAfterDenoiser(PipelineBlock): class FluxLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
...@@ -175,7 +172,7 @@ class FluxDenoiseLoopWrapper(LoopSequentialPipelineBlocks): ...@@ -175,7 +172,7 @@ class FluxDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
] ]
@property @property
def loop_intermediate_inputs(self) -> List[InputParam]: def loop_inputs(self) -> List[InputParam]:
return [ return [
InputParam( InputParam(
"timesteps", "timesteps",
......
...@@ -24,7 +24,7 @@ from ...image_processor import VaeImageProcessor ...@@ -24,7 +24,7 @@ from ...image_processor import VaeImageProcessor
from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL from ...models import AutoencoderKL
from ...utils import USE_PEFT_BACKEND, is_ftfy_available, logging, scale_lora_layers, unscale_lora_layers from ...utils import USE_PEFT_BACKEND, is_ftfy_available, logging, scale_lora_layers, unscale_lora_layers
from ..modular_pipeline import PipelineBlock, PipelineState from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from .modular_pipeline import FluxModularPipeline from .modular_pipeline import FluxModularPipeline
...@@ -67,7 +67,7 @@ def retrieve_latents( ...@@ -67,7 +67,7 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output") raise AttributeError("Could not access latents of provided encoder_output")
class FluxVaeEncoderStep(PipelineBlock): class FluxVaeEncoderStep(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
...@@ -88,11 +88,10 @@ class FluxVaeEncoderStep(PipelineBlock): ...@@ -88,11 +88,10 @@ class FluxVaeEncoderStep(PipelineBlock):
@property @property
def inputs(self) -> List[InputParam]: def inputs(self) -> List[InputParam]:
return [InputParam("image", required=True), InputParam("height"), InputParam("width")]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [ return [
InputParam("image", required=True),
InputParam("height"),
InputParam("width"),
InputParam("generator"), InputParam("generator"),
InputParam("dtype", type_hint=torch.dtype, description="Data type of model tensor inputs"), InputParam("dtype", type_hint=torch.dtype, description="Data type of model tensor inputs"),
InputParam( InputParam(
...@@ -157,7 +156,7 @@ class FluxVaeEncoderStep(PipelineBlock): ...@@ -157,7 +156,7 @@ class FluxVaeEncoderStep(PipelineBlock):
return components, state return components, state
class FluxTextEncoderStep(PipelineBlock): class FluxTextEncoderStep(ModularPipelineBlocks):
model_name = "flux" model_name = "flux"
@property @property
......
...@@ -618,7 +618,6 @@ def format_configs(configs, indent_level=4, max_line_length=115, add_empty_lines ...@@ -618,7 +618,6 @@ def format_configs(configs, indent_level=4, max_line_length=115, add_empty_lines
def make_doc_string( def make_doc_string(
inputs, inputs,
intermediate_inputs,
outputs, outputs,
description="", description="",
class_name=None, class_name=None,
...@@ -664,7 +663,7 @@ def make_doc_string( ...@@ -664,7 +663,7 @@ def make_doc_string(
output += configs_str + "\n\n" output += configs_str + "\n\n"
# Add inputs section # Add inputs section
output += format_input_params(inputs + intermediate_inputs, indent_level=2) output += format_input_params(inputs, indent_level=2)
# Add outputs section # Add outputs section
output += "\n\n" output += "\n\n"
......
...@@ -27,7 +27,7 @@ from ...schedulers import EulerDiscreteScheduler ...@@ -27,7 +27,7 @@ from ...schedulers import EulerDiscreteScheduler
from ...utils import logging from ...utils import logging
from ...utils.torch_utils import randn_tensor, unwrap_module from ...utils.torch_utils import randn_tensor, unwrap_module
from ..modular_pipeline import ( from ..modular_pipeline import (
PipelineBlock, ModularPipelineBlocks,
PipelineState, PipelineState,
) )
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
...@@ -195,7 +195,7 @@ def prepare_latents_img2img( ...@@ -195,7 +195,7 @@ def prepare_latents_img2img(
return latents return latents
class StableDiffusionXLInputStep(PipelineBlock): class StableDiffusionXLInputStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -213,11 +213,6 @@ class StableDiffusionXLInputStep(PipelineBlock): ...@@ -213,11 +213,6 @@ class StableDiffusionXLInputStep(PipelineBlock):
def inputs(self) -> List[InputParam]: def inputs(self) -> List[InputParam]:
return [ return [
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"prompt_embeds", "prompt_embeds",
required=True, required=True,
...@@ -394,7 +389,7 @@ class StableDiffusionXLInputStep(PipelineBlock): ...@@ -394,7 +389,7 @@ class StableDiffusionXLInputStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLImg2ImgSetTimestepsStep(PipelineBlock): class StableDiffusionXLImg2ImgSetTimestepsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -421,11 +416,6 @@ class StableDiffusionXLImg2ImgSetTimestepsStep(PipelineBlock): ...@@ -421,11 +416,6 @@ class StableDiffusionXLImg2ImgSetTimestepsStep(PipelineBlock):
InputParam("denoising_start"), InputParam("denoising_start"),
# YiYi TODO: do we need num_images_per_prompt here? # YiYi TODO: do we need num_images_per_prompt here?
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"batch_size", "batch_size",
required=True, required=True,
...@@ -543,7 +533,7 @@ class StableDiffusionXLImg2ImgSetTimestepsStep(PipelineBlock): ...@@ -543,7 +533,7 @@ class StableDiffusionXLImg2ImgSetTimestepsStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLSetTimestepsStep(PipelineBlock): class StableDiffusionXLSetTimestepsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -611,7 +601,7 @@ class StableDiffusionXLSetTimestepsStep(PipelineBlock): ...@@ -611,7 +601,7 @@ class StableDiffusionXLSetTimestepsStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLInpaintPrepareLatentsStep(PipelineBlock): class StableDiffusionXLInpaintPrepareLatentsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -640,11 +630,6 @@ class StableDiffusionXLInpaintPrepareLatentsStep(PipelineBlock): ...@@ -640,11 +630,6 @@ class StableDiffusionXLInpaintPrepareLatentsStep(PipelineBlock):
"`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of " "`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of "
"`denoising_start` being declared as an integer, the value of `strength` will be ignored.", "`denoising_start` being declared as an integer, the value of `strength` will be ignored.",
), ),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam("generator"), InputParam("generator"),
InputParam( InputParam(
"batch_size", "batch_size",
...@@ -890,7 +875,7 @@ class StableDiffusionXLInpaintPrepareLatentsStep(PipelineBlock): ...@@ -890,7 +875,7 @@ class StableDiffusionXLInpaintPrepareLatentsStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLImg2ImgPrepareLatentsStep(PipelineBlock): class StableDiffusionXLImg2ImgPrepareLatentsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -910,11 +895,6 @@ class StableDiffusionXLImg2ImgPrepareLatentsStep(PipelineBlock): ...@@ -910,11 +895,6 @@ class StableDiffusionXLImg2ImgPrepareLatentsStep(PipelineBlock):
InputParam("latents"), InputParam("latents"),
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
InputParam("denoising_start"), InputParam("denoising_start"),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"), InputParam("generator"),
InputParam( InputParam(
"latent_timestep", "latent_timestep",
...@@ -971,7 +951,7 @@ class StableDiffusionXLImg2ImgPrepareLatentsStep(PipelineBlock): ...@@ -971,7 +951,7 @@ class StableDiffusionXLImg2ImgPrepareLatentsStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLPrepareLatentsStep(PipelineBlock): class StableDiffusionXLPrepareLatentsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -992,11 +972,6 @@ class StableDiffusionXLPrepareLatentsStep(PipelineBlock): ...@@ -992,11 +972,6 @@ class StableDiffusionXLPrepareLatentsStep(PipelineBlock):
InputParam("width"), InputParam("width"),
InputParam("latents"), InputParam("latents"),
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"), InputParam("generator"),
InputParam( InputParam(
"batch_size", "batch_size",
...@@ -1082,7 +1057,7 @@ class StableDiffusionXLPrepareLatentsStep(PipelineBlock): ...@@ -1082,7 +1057,7 @@ class StableDiffusionXLPrepareLatentsStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock): class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -1119,11 +1094,6 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock): ...@@ -1119,11 +1094,6 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
InputParam("aesthetic_score", default=6.0), InputParam("aesthetic_score", default=6.0),
InputParam("negative_aesthetic_score", default=2.0), InputParam("negative_aesthetic_score", default=2.0),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam( InputParam(
"latents", "latents",
required=True, required=True,
...@@ -1306,7 +1276,7 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock): ...@@ -1306,7 +1276,7 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock): class StableDiffusionXLPrepareAdditionalConditioningStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -1335,11 +1305,6 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock): ...@@ -1335,11 +1305,6 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock):
InputParam("crops_coords_top_left", default=(0, 0)), InputParam("crops_coords_top_left", default=(0, 0)),
InputParam("negative_crops_coords_top_left", default=(0, 0)), InputParam("negative_crops_coords_top_left", default=(0, 0)),
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam( InputParam(
"latents", "latents",
required=True, required=True,
...@@ -1489,7 +1454,7 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock): ...@@ -1489,7 +1454,7 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLControlNetInputStep(PipelineBlock): class StableDiffusionXLControlNetInputStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -1517,11 +1482,6 @@ class StableDiffusionXLControlNetInputStep(PipelineBlock): ...@@ -1517,11 +1482,6 @@ class StableDiffusionXLControlNetInputStep(PipelineBlock):
InputParam("controlnet_conditioning_scale", default=1.0), InputParam("controlnet_conditioning_scale", default=1.0),
InputParam("guess_mode", default=False), InputParam("guess_mode", default=False),
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"latents", "latents",
required=True, required=True,
...@@ -1708,7 +1668,7 @@ class StableDiffusionXLControlNetInputStep(PipelineBlock): ...@@ -1708,7 +1668,7 @@ class StableDiffusionXLControlNetInputStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLControlNetUnionInputStep(PipelineBlock): class StableDiffusionXLControlNetUnionInputStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -1737,11 +1697,6 @@ class StableDiffusionXLControlNetUnionInputStep(PipelineBlock): ...@@ -1737,11 +1697,6 @@ class StableDiffusionXLControlNetUnionInputStep(PipelineBlock):
InputParam("controlnet_conditioning_scale", default=1.0), InputParam("controlnet_conditioning_scale", default=1.0),
InputParam("guess_mode", default=False), InputParam("guess_mode", default=False),
InputParam("num_images_per_prompt", default=1), InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam( InputParam(
"latents", "latents",
required=True, required=True,
......
...@@ -24,7 +24,7 @@ from ...models import AutoencoderKL ...@@ -24,7 +24,7 @@ from ...models import AutoencoderKL
from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
from ...utils import logging from ...utils import logging
from ..modular_pipeline import ( from ..modular_pipeline import (
PipelineBlock, ModularPipelineBlocks,
PipelineState, PipelineState,
) )
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
...@@ -33,7 +33,7 @@ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam ...@@ -33,7 +33,7 @@ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
logger = logging.get_logger(__name__) # pylint: disable=invalid-name logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class StableDiffusionXLDecodeStep(PipelineBlock): class StableDiffusionXLDecodeStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -56,17 +56,12 @@ class StableDiffusionXLDecodeStep(PipelineBlock): ...@@ -56,17 +56,12 @@ class StableDiffusionXLDecodeStep(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]: def inputs(self) -> List[Tuple[str, Any]]:
return [ return [
InputParam("output_type", default="pil"), InputParam("output_type", default="pil"),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"latents", "latents",
required=True, required=True,
type_hint=torch.Tensor, type_hint=torch.Tensor,
description="The denoised latents from the denoising step", description="The denoised latents from the denoising step",
) ),
] ]
@property @property
...@@ -157,7 +152,7 @@ class StableDiffusionXLDecodeStep(PipelineBlock): ...@@ -157,7 +152,7 @@ class StableDiffusionXLDecodeStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLInpaintOverlayMaskStep(PipelineBlock): class StableDiffusionXLInpaintOverlayMaskStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -184,11 +179,6 @@ class StableDiffusionXLInpaintOverlayMaskStep(PipelineBlock): ...@@ -184,11 +179,6 @@ class StableDiffusionXLInpaintOverlayMaskStep(PipelineBlock):
InputParam("image"), InputParam("image"),
InputParam("mask_image"), InputParam("mask_image"),
InputParam("padding_mask_crop"), InputParam("padding_mask_crop"),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"images", "images",
type_hint=Union[List[PIL.Image.Image], List[torch.Tensor], List[np.array]], type_hint=Union[List[PIL.Image.Image], List[torch.Tensor], List[np.array]],
......
...@@ -25,7 +25,7 @@ from ...utils import logging ...@@ -25,7 +25,7 @@ from ...utils import logging
from ..modular_pipeline import ( from ..modular_pipeline import (
BlockState, BlockState,
LoopSequentialPipelineBlocks, LoopSequentialPipelineBlocks,
PipelineBlock, ModularPipelineBlocks,
PipelineState, PipelineState,
) )
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
...@@ -37,7 +37,7 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name ...@@ -37,7 +37,7 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# YiYi experimenting composible denoise loop # YiYi experimenting composible denoise loop
# loop step (1): prepare latent input for denoiser # loop step (1): prepare latent input for denoiser
class StableDiffusionXLLoopBeforeDenoiser(PipelineBlock): class StableDiffusionXLLoopBeforeDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -55,7 +55,7 @@ class StableDiffusionXLLoopBeforeDenoiser(PipelineBlock): ...@@ -55,7 +55,7 @@ class StableDiffusionXLLoopBeforeDenoiser(PipelineBlock):
) )
@property @property
def intermediate_inputs(self) -> List[str]: def inputs(self) -> List[str]:
return [ return [
InputParam( InputParam(
"latents", "latents",
...@@ -73,7 +73,7 @@ class StableDiffusionXLLoopBeforeDenoiser(PipelineBlock): ...@@ -73,7 +73,7 @@ class StableDiffusionXLLoopBeforeDenoiser(PipelineBlock):
# loop step (1): prepare latent input for denoiser (with inpainting) # loop step (1): prepare latent input for denoiser (with inpainting)
class StableDiffusionXLInpaintLoopBeforeDenoiser(PipelineBlock): class StableDiffusionXLInpaintLoopBeforeDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -91,7 +91,7 @@ class StableDiffusionXLInpaintLoopBeforeDenoiser(PipelineBlock): ...@@ -91,7 +91,7 @@ class StableDiffusionXLInpaintLoopBeforeDenoiser(PipelineBlock):
) )
@property @property
def intermediate_inputs(self) -> List[str]: def inputs(self) -> List[str]:
return [ return [
InputParam( InputParam(
"latents", "latents",
...@@ -144,7 +144,7 @@ class StableDiffusionXLInpaintLoopBeforeDenoiser(PipelineBlock): ...@@ -144,7 +144,7 @@ class StableDiffusionXLInpaintLoopBeforeDenoiser(PipelineBlock):
# loop step (2): denoise the latents with guidance # loop step (2): denoise the latents with guidance
class StableDiffusionXLLoopDenoiser(PipelineBlock): class StableDiffusionXLLoopDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -171,11 +171,6 @@ class StableDiffusionXLLoopDenoiser(PipelineBlock): ...@@ -171,11 +171,6 @@ class StableDiffusionXLLoopDenoiser(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]: def inputs(self) -> List[Tuple[str, Any]]:
return [ return [
InputParam("cross_attention_kwargs"), InputParam("cross_attention_kwargs"),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"num_inference_steps", "num_inference_steps",
required=True, required=True,
...@@ -249,7 +244,7 @@ class StableDiffusionXLLoopDenoiser(PipelineBlock): ...@@ -249,7 +244,7 @@ class StableDiffusionXLLoopDenoiser(PipelineBlock):
# loop step (2): denoise the latents with guidance (with controlnet) # loop step (2): denoise the latents with guidance (with controlnet)
class StableDiffusionXLControlNetLoopDenoiser(PipelineBlock): class StableDiffusionXLControlNetLoopDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -277,11 +272,6 @@ class StableDiffusionXLControlNetLoopDenoiser(PipelineBlock): ...@@ -277,11 +272,6 @@ class StableDiffusionXLControlNetLoopDenoiser(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]: def inputs(self) -> List[Tuple[str, Any]]:
return [ return [
InputParam("cross_attention_kwargs"), InputParam("cross_attention_kwargs"),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam( InputParam(
"controlnet_cond", "controlnet_cond",
required=True, required=True,
...@@ -449,7 +439,7 @@ class StableDiffusionXLControlNetLoopDenoiser(PipelineBlock): ...@@ -449,7 +439,7 @@ class StableDiffusionXLControlNetLoopDenoiser(PipelineBlock):
# loop step (3): scheduler step to update latents # loop step (3): scheduler step to update latents
class StableDiffusionXLLoopAfterDenoiser(PipelineBlock): class StableDiffusionXLLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -470,11 +460,6 @@ class StableDiffusionXLLoopAfterDenoiser(PipelineBlock): ...@@ -470,11 +460,6 @@ class StableDiffusionXLLoopAfterDenoiser(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]: def inputs(self) -> List[Tuple[str, Any]]:
return [ return [
InputParam("eta", default=0.0), InputParam("eta", default=0.0),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam("generator"), InputParam("generator"),
] ]
...@@ -520,7 +505,7 @@ class StableDiffusionXLLoopAfterDenoiser(PipelineBlock): ...@@ -520,7 +505,7 @@ class StableDiffusionXLLoopAfterDenoiser(PipelineBlock):
# loop step (3): scheduler step to update latents (with inpainting) # loop step (3): scheduler step to update latents (with inpainting)
class StableDiffusionXLInpaintLoopAfterDenoiser(PipelineBlock): class StableDiffusionXLInpaintLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -542,11 +527,6 @@ class StableDiffusionXLInpaintLoopAfterDenoiser(PipelineBlock): ...@@ -542,11 +527,6 @@ class StableDiffusionXLInpaintLoopAfterDenoiser(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]: def inputs(self) -> List[Tuple[str, Any]]:
return [ return [
InputParam("eta", default=0.0), InputParam("eta", default=0.0),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam("generator"), InputParam("generator"),
InputParam( InputParam(
"timesteps", "timesteps",
...@@ -660,7 +640,7 @@ class StableDiffusionXLDenoiseLoopWrapper(LoopSequentialPipelineBlocks): ...@@ -660,7 +640,7 @@ class StableDiffusionXLDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
] ]
@property @property
def loop_intermediate_inputs(self) -> List[InputParam]: def loop_inputs(self) -> List[InputParam]:
return [ return [
InputParam( InputParam(
"timesteps", "timesteps",
......
...@@ -35,7 +35,7 @@ from ...utils import ( ...@@ -35,7 +35,7 @@ from ...utils import (
scale_lora_layers, scale_lora_layers,
unscale_lora_layers, unscale_lora_layers,
) )
from ..modular_pipeline import PipelineBlock, PipelineState from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from .modular_pipeline import StableDiffusionXLModularPipeline from .modular_pipeline import StableDiffusionXLModularPipeline
...@@ -57,7 +57,7 @@ def retrieve_latents( ...@@ -57,7 +57,7 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output") raise AttributeError("Could not access latents of provided encoder_output")
class StableDiffusionXLIPAdapterStep(PipelineBlock): class StableDiffusionXLIPAdapterStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -215,7 +215,7 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock): ...@@ -215,7 +215,7 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLTextEncoderStep(PipelineBlock): class StableDiffusionXLTextEncoderStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -576,7 +576,7 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock): ...@@ -576,7 +576,7 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
return components, state return components, state
class StableDiffusionXLVaeEncoderStep(PipelineBlock): class StableDiffusionXLVaeEncoderStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -601,11 +601,6 @@ class StableDiffusionXLVaeEncoderStep(PipelineBlock): ...@@ -601,11 +601,6 @@ class StableDiffusionXLVaeEncoderStep(PipelineBlock):
InputParam("image", required=True), InputParam("image", required=True),
InputParam("height"), InputParam("height"),
InputParam("width"), InputParam("width"),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"), InputParam("generator"),
InputParam("dtype", type_hint=torch.dtype, description="Data type of model tensor inputs"), InputParam("dtype", type_hint=torch.dtype, description="Data type of model tensor inputs"),
InputParam( InputParam(
...@@ -668,12 +663,11 @@ class StableDiffusionXLVaeEncoderStep(PipelineBlock): ...@@ -668,12 +663,11 @@ class StableDiffusionXLVaeEncoderStep(PipelineBlock):
block_state.device = components._execution_device block_state.device = components._execution_device
block_state.dtype = block_state.dtype if block_state.dtype is not None else components.vae.dtype block_state.dtype = block_state.dtype if block_state.dtype is not None else components.vae.dtype
block_state.image = components.image_processor.preprocess( image = components.image_processor.preprocess(
block_state.image, height=block_state.height, width=block_state.width, **block_state.preprocess_kwargs block_state.image, height=block_state.height, width=block_state.width, **block_state.preprocess_kwargs
) )
block_state.image = block_state.image.to(device=block_state.device, dtype=block_state.dtype) image = image.to(device=block_state.device, dtype=block_state.dtype)
block_state.batch_size = image.shape[0]
block_state.batch_size = block_state.image.shape[0]
# if generator is a list, make sure the length of it matches the length of images (both should be batch_size) # if generator is a list, make sure the length of it matches the length of images (both should be batch_size)
if isinstance(block_state.generator, list) and len(block_state.generator) != block_state.batch_size: if isinstance(block_state.generator, list) and len(block_state.generator) != block_state.batch_size:
...@@ -682,16 +676,14 @@ class StableDiffusionXLVaeEncoderStep(PipelineBlock): ...@@ -682,16 +676,14 @@ class StableDiffusionXLVaeEncoderStep(PipelineBlock):
f" size of {block_state.batch_size}. Make sure the batch size matches the length of the generators." f" size of {block_state.batch_size}. Make sure the batch size matches the length of the generators."
) )
block_state.image_latents = self._encode_vae_image( block_state.image_latents = self._encode_vae_image(components, image=image, generator=block_state.generator)
components, image=block_state.image, generator=block_state.generator
)
self.set_block_state(state, block_state) self.set_block_state(state, block_state)
return components, state return components, state
class StableDiffusionXLInpaintVaeEncoderStep(PipelineBlock): class StableDiffusionXLInpaintVaeEncoderStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl" model_name = "stable-diffusion-xl"
@property @property
...@@ -726,11 +718,6 @@ class StableDiffusionXLInpaintVaeEncoderStep(PipelineBlock): ...@@ -726,11 +718,6 @@ class StableDiffusionXLInpaintVaeEncoderStep(PipelineBlock):
InputParam("image", required=True), InputParam("image", required=True),
InputParam("mask_image", required=True), InputParam("mask_image", required=True),
InputParam("padding_mask_crop"), InputParam("padding_mask_crop"),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("dtype", type_hint=torch.dtype, description="The dtype of the model inputs"), InputParam("dtype", type_hint=torch.dtype, description="The dtype of the model inputs"),
InputParam("generator"), InputParam("generator"),
] ]
...@@ -860,34 +847,32 @@ class StableDiffusionXLInpaintVaeEncoderStep(PipelineBlock): ...@@ -860,34 +847,32 @@ class StableDiffusionXLInpaintVaeEncoderStep(PipelineBlock):
block_state.crops_coords = None block_state.crops_coords = None
block_state.resize_mode = "default" block_state.resize_mode = "default"
block_state.image = components.image_processor.preprocess( image = components.image_processor.preprocess(
block_state.image, block_state.image,
height=block_state.height, height=block_state.height,
width=block_state.width, width=block_state.width,
crops_coords=block_state.crops_coords, crops_coords=block_state.crops_coords,
resize_mode=block_state.resize_mode, resize_mode=block_state.resize_mode,
) )
block_state.image = block_state.image.to(dtype=torch.float32) image = image.to(dtype=torch.float32)
block_state.mask = components.mask_processor.preprocess( mask = components.mask_processor.preprocess(
block_state.mask_image, block_state.mask_image,
height=block_state.height, height=block_state.height,
width=block_state.width, width=block_state.width,
resize_mode=block_state.resize_mode, resize_mode=block_state.resize_mode,
crops_coords=block_state.crops_coords, crops_coords=block_state.crops_coords,
) )
block_state.masked_image = block_state.image * (block_state.mask < 0.5) block_state.masked_image = image * (mask < 0.5)
block_state.batch_size = block_state.image.shape[0] block_state.batch_size = image.shape[0]
block_state.image = block_state.image.to(device=block_state.device, dtype=block_state.dtype) image = image.to(device=block_state.device, dtype=block_state.dtype)
block_state.image_latents = self._encode_vae_image( block_state.image_latents = self._encode_vae_image(components, image=image, generator=block_state.generator)
components, image=block_state.image, generator=block_state.generator
)
# 7. Prepare mask latent variables # 7. Prepare mask latent variables
block_state.mask, block_state.masked_image_latents = self.prepare_mask_latents( block_state.mask, block_state.masked_image_latents = self.prepare_mask_latents(
components, components,
block_state.mask, mask,
block_state.masked_image, block_state.masked_image,
block_state.batch_size, block_state.batch_size,
block_state.height, block_state.height,
......
...@@ -247,10 +247,6 @@ SDXL_INPUTS_SCHEMA = { ...@@ -247,10 +247,6 @@ SDXL_INPUTS_SCHEMA = {
"control_mode": InputParam( "control_mode": InputParam(
"control_mode", type_hint=List[int], required=True, description="Control mode for union controlnet" "control_mode", type_hint=List[int], required=True, description="Control mode for union controlnet"
), ),
}
SDXL_INTERMEDIATE_INPUTS_SCHEMA = {
"prompt_embeds": InputParam( "prompt_embeds": InputParam(
"prompt_embeds", "prompt_embeds",
type_hint=torch.Tensor, type_hint=torch.Tensor,
...@@ -271,13 +267,6 @@ SDXL_INTERMEDIATE_INPUTS_SCHEMA = { ...@@ -271,13 +267,6 @@ SDXL_INTERMEDIATE_INPUTS_SCHEMA = {
"preprocess_kwargs": InputParam( "preprocess_kwargs": InputParam(
"preprocess_kwargs", type_hint=Optional[dict], description="Kwargs for ImageProcessor" "preprocess_kwargs", type_hint=Optional[dict], description="Kwargs for ImageProcessor"
), ),
"latents": InputParam(
"latents", type_hint=torch.Tensor, required=True, description="Initial latents for denoising process"
),
"timesteps": InputParam("timesteps", type_hint=torch.Tensor, required=True, description="Timesteps for inference"),
"num_inference_steps": InputParam(
"num_inference_steps", type_hint=int, required=True, description="Number of denoising steps"
),
"latent_timestep": InputParam( "latent_timestep": InputParam(
"latent_timestep", type_hint=torch.Tensor, required=True, description="Initial noise level timestep" "latent_timestep", type_hint=torch.Tensor, required=True, description="Initial noise level timestep"
), ),
......
...@@ -20,7 +20,7 @@ import torch ...@@ -20,7 +20,7 @@ import torch
from ...schedulers import UniPCMultistepScheduler from ...schedulers import UniPCMultistepScheduler
from ...utils import logging from ...utils import logging
from ...utils.torch_utils import randn_tensor from ...utils.torch_utils import randn_tensor
from ..modular_pipeline import PipelineBlock, PipelineState from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import WanModularPipeline from .modular_pipeline import WanModularPipeline
...@@ -94,7 +94,7 @@ def retrieve_timesteps( ...@@ -94,7 +94,7 @@ def retrieve_timesteps(
return timesteps, num_inference_steps return timesteps, num_inference_steps
class WanInputStep(PipelineBlock): class WanInputStep(ModularPipelineBlocks):
model_name = "wan" model_name = "wan"
@property @property
...@@ -194,7 +194,7 @@ class WanInputStep(PipelineBlock): ...@@ -194,7 +194,7 @@ class WanInputStep(PipelineBlock):
return components, state return components, state
class WanSetTimestepsStep(PipelineBlock): class WanSetTimestepsStep(ModularPipelineBlocks):
model_name = "wan" model_name = "wan"
@property @property
...@@ -243,7 +243,7 @@ class WanSetTimestepsStep(PipelineBlock): ...@@ -243,7 +243,7 @@ class WanSetTimestepsStep(PipelineBlock):
return components, state return components, state
class WanPrepareLatentsStep(PipelineBlock): class WanPrepareLatentsStep(ModularPipelineBlocks):
model_name = "wan" model_name = "wan"
@property @property
......
...@@ -22,14 +22,14 @@ from ...configuration_utils import FrozenDict ...@@ -22,14 +22,14 @@ from ...configuration_utils import FrozenDict
from ...models import AutoencoderKLWan from ...models import AutoencoderKLWan
from ...utils import logging from ...utils import logging
from ...video_processor import VideoProcessor from ...video_processor import VideoProcessor
from ..modular_pipeline import PipelineBlock, PipelineState from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
logger = logging.get_logger(__name__) # pylint: disable=invalid-name logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class WanDecodeStep(PipelineBlock): class WanDecodeStep(ModularPipelineBlocks):
model_name = "wan" model_name = "wan"
@property @property
......
...@@ -24,7 +24,7 @@ from ...utils import logging ...@@ -24,7 +24,7 @@ from ...utils import logging
from ..modular_pipeline import ( from ..modular_pipeline import (
BlockState, BlockState,
LoopSequentialPipelineBlocks, LoopSequentialPipelineBlocks,
PipelineBlock, ModularPipelineBlocks,
PipelineState, PipelineState,
) )
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
...@@ -34,7 +34,7 @@ from .modular_pipeline import WanModularPipeline ...@@ -34,7 +34,7 @@ from .modular_pipeline import WanModularPipeline
logger = logging.get_logger(__name__) # pylint: disable=invalid-name logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class WanLoopDenoiser(PipelineBlock): class WanLoopDenoiser(ModularPipelineBlocks):
model_name = "wan" model_name = "wan"
@property @property
...@@ -132,7 +132,7 @@ class WanLoopDenoiser(PipelineBlock): ...@@ -132,7 +132,7 @@ class WanLoopDenoiser(PipelineBlock):
return components, block_state return components, block_state
class WanLoopAfterDenoiser(PipelineBlock): class WanLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "wan" model_name = "wan"
@property @property
......
...@@ -22,7 +22,7 @@ from transformers import AutoTokenizer, UMT5EncoderModel ...@@ -22,7 +22,7 @@ from transformers import AutoTokenizer, UMT5EncoderModel
from ...configuration_utils import FrozenDict from ...configuration_utils import FrozenDict
from ...guiders import ClassifierFreeGuidance from ...guiders import ClassifierFreeGuidance
from ...utils import is_ftfy_available, logging from ...utils import is_ftfy_available, logging
from ..modular_pipeline import PipelineBlock, PipelineState from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from .modular_pipeline import WanModularPipeline from .modular_pipeline import WanModularPipeline
...@@ -51,7 +51,7 @@ def prompt_clean(text): ...@@ -51,7 +51,7 @@ def prompt_clean(text):
return text return text
class WanTextEncoderStep(PipelineBlock): class WanTextEncoderStep(ModularPipelineBlocks):
model_name = "wan" model_name = "wan"
@property @property
......
...@@ -117,13 +117,9 @@ class SDXLModularIPAdapterTests: ...@@ -117,13 +117,9 @@ class SDXLModularIPAdapterTests:
_ = blocks.sub_blocks.pop("ip_adapter") _ = blocks.sub_blocks.pop("ip_adapter")
parameters = blocks.input_names parameters = blocks.input_names
intermediate_parameters = blocks.intermediate_input_names
assert "ip_adapter_image" not in parameters, ( assert "ip_adapter_image" not in parameters, (
"`ip_adapter_image` argument must be removed from the `__call__` method" "`ip_adapter_image` argument must be removed from the `__call__` method"
) )
assert "ip_adapter_image_embeds" not in intermediate_parameters, (
"`ip_adapter_image_embeds` argument must be supported by the `__call__` method"
)
def _get_dummy_image_embeds(self, cross_attention_dim: int = 32): def _get_dummy_image_embeds(self, cross_attention_dim: int = 32):
return torch.randn((1, 1, cross_attention_dim), device=torch_device) return torch.randn((1, 1, cross_attention_dim), device=torch_device)
......
...@@ -139,7 +139,6 @@ class ModularPipelineTesterMixin: ...@@ -139,7 +139,6 @@ class ModularPipelineTesterMixin:
def test_pipeline_call_signature(self): def test_pipeline_call_signature(self):
pipe = self.get_pipeline() pipe = self.get_pipeline()
input_parameters = pipe.blocks.input_names input_parameters = pipe.blocks.input_names
intermediate_parameters = pipe.blocks.intermediate_input_names
optional_parameters = pipe.default_call_parameters optional_parameters = pipe.default_call_parameters
def _check_for_parameters(parameters, expected_parameters, param_type): def _check_for_parameters(parameters, expected_parameters, param_type):
...@@ -149,7 +148,6 @@ class ModularPipelineTesterMixin: ...@@ -149,7 +148,6 @@ class ModularPipelineTesterMixin:
) )
_check_for_parameters(self.params, input_parameters, "input") _check_for_parameters(self.params, input_parameters, "input")
_check_for_parameters(self.intermediate_params, intermediate_parameters, "intermediate")
_check_for_parameters(self.optional_params, optional_parameters, "optional") _check_for_parameters(self.optional_params, optional_parameters, "optional")
def test_inference_batch_consistent(self, batch_sizes=[2], batch_generator=True): def test_inference_batch_consistent(self, batch_sizes=[2], batch_generator=True):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment