Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
60d915fb
Commit
60d915fb
authored
Jan 31, 2023
by
Patrick von Platen
Browse files
make style
parent
d1efefe1
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
4 additions
and
4 deletions
+4
-4
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
...ble_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
+3
-3
tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint_legacy.py
.../stable_diffusion/test_stable_diffusion_inpaint_legacy.py
+1
-1
No files found.
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
View file @
60d915fb
...
@@ -45,7 +45,6 @@ def preprocess_image(image):
...
@@ -45,7 +45,6 @@ def preprocess_image(image):
def
preprocess_mask
(
mask
,
scale_factor
=
8
):
def
preprocess_mask
(
mask
,
scale_factor
=
8
):
if
not
isinstance
(
mask
,
torch
.
FloatTensor
):
if
not
isinstance
(
mask
,
torch
.
FloatTensor
):
mask
=
mask
.
convert
(
"L"
)
mask
=
mask
.
convert
(
"L"
)
w
,
h
=
mask
.
size
w
,
h
=
mask
.
size
...
@@ -65,7 +64,8 @@ def preprocess_mask(mask, scale_factor=8):
...
@@ -65,7 +64,8 @@ def preprocess_mask(mask, scale_factor=8):
mask
=
mask
.
permute
(
0
,
3
,
1
,
2
)
mask
=
mask
.
permute
(
0
,
3
,
1
,
2
)
elif
mask
.
shape
[
1
]
not
in
valid_mask_channel_sizes
:
elif
mask
.
shape
[
1
]
not
in
valid_mask_channel_sizes
:
raise
ValueError
(
raise
ValueError
(
f
"Mask channel dimension of size in
{
valid_mask_channel_sizes
}
should be second or fourth dimension, but received mask of shape
{
tuple
(
mask
.
shape
)
}
"
f
"Mask channel dimension of size in
{
valid_mask_channel_sizes
}
should be second or fourth dimension,"
f
" but received mask of shape
{
tuple
(
mask
.
shape
)
}
"
)
)
# (potentially) reduce mask channel dimension from 3 to 1 for broadcasting to latent shape
# (potentially) reduce mask channel dimension from 3 to 1 for broadcasting to latent shape
mask
=
mask
.
mean
(
dim
=
1
,
keepdim
=
True
)
mask
=
mask
.
mean
(
dim
=
1
,
keepdim
=
True
)
...
@@ -515,7 +515,7 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
...
@@ -515,7 +515,7 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
PIL image, it will be converted to a single channel (luminance) before use. If mask is a tensor, the
PIL image, it will be converted to a single channel (luminance) before use. If mask is a tensor, the
expected shape should be either `(B, H, W, C)` or `(B, C, H, W)`, where C is 1 or 3.
expected shape should be either `(B, H, W, C)` or `(B, C, H, W)`, where C is 1 or 3.
strength (`float`, *optional*, defaults to 0.8):
strength (`float`, *optional*, defaults to 0.8):
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
...
...
tests/pipelines/stable_diffusion/test_stable_diffusion_inpaint_legacy.py
View file @
60d915fb
...
@@ -213,7 +213,7 @@ class StableDiffusionInpaintLegacyPipelineFastTests(unittest.TestCase):
...
@@ -213,7 +213,7 @@ class StableDiffusionInpaintLegacyPipelineFastTests(unittest.TestCase):
assert
image
.
shape
==
(
1
,
32
,
32
,
3
)
assert
image
.
shape
==
(
1
,
32
,
32
,
3
)
expected_slice
=
np
.
array
([
0.4941
,
0.5396
,
0.4689
,
0.6338
,
0.5392
,
0.4094
,
0.5477
,
0.5904
,
0.5165
])
expected_slice
=
np
.
array
([
0.4941
,
0.5396
,
0.4689
,
0.6338
,
0.5392
,
0.4094
,
0.5477
,
0.5904
,
0.5165
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
assert
np
.
abs
(
image_from_tuple_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
assert
np
.
abs
(
image_from_tuple_slice
.
flatten
()
-
expected_slice
).
max
()
<
1e-2
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment