"src/vscode:/vscode.git/clone" did not exist on "e8114bd068b0ffa3d797dd060c65715d9f74651f"
Unverified Commit 5ffbe14c authored by 王奇勋's avatar 王奇勋 Committed by GitHub
Browse files

[FLUX] Support ControlNet (#9126)



* cnt model

* cnt model

* cnt model

* fix Loader "Copied"

* format

* txt_ids for  multiple images

* add test and format

* typo

* Update pipeline_flux_controlnet.py

* remove

* make quality

* fix copy

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/models/controlnet_flux.py
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>

* fix

* make copies

* test

* bs

---------
Co-authored-by: default avatarhaofanwang <haofanwang.ai@gmail.com>
Co-authored-by: default avatarhaofanwang <haofan@HaofandeMBP.lan>
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
parent cc051309
......@@ -88,6 +88,7 @@ else:
"ControlNetModel",
"ControlNetXSAdapter",
"DiTTransformer2DModel",
"FluxControlNetModel",
"FluxTransformer2DModel",
"HunyuanDiT2DControlNetModel",
"HunyuanDiT2DModel",
......@@ -254,6 +255,7 @@ else:
"CLIPImageProjection",
"CogVideoXPipeline",
"CycleDiffusionPipeline",
"FluxControlNetPipeline",
"FluxPipeline",
"HunyuanDiTControlNetPipeline",
"HunyuanDiTPAGPipeline",
......@@ -550,6 +552,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
ControlNetModel,
ControlNetXSAdapter,
DiTTransformer2DModel,
FluxControlNetModel,
FluxTransformer2DModel,
HunyuanDiT2DControlNetModel,
HunyuanDiT2DModel,
......@@ -694,6 +697,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
CLIPImageProjection,
CogVideoXPipeline,
CycleDiffusionPipeline,
FluxControlNetPipeline,
FluxPipeline,
HunyuanDiTControlNetPipeline,
HunyuanDiTPAGPipeline,
......
......@@ -35,6 +35,7 @@ if is_torch_available():
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
_import_structure["autoencoders.vq_model"] = ["VQModel"]
_import_structure["controlnet"] = ["ControlNetModel"]
_import_structure["controlnet_flux"] = ["FluxControlNetModel"]
_import_structure["controlnet_hunyuan"] = ["HunyuanDiT2DControlNetModel", "HunyuanDiT2DMultiControlNetModel"]
_import_structure["controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"]
_import_structure["controlnet_sparsectrl"] = ["SparseControlNetModel"]
......@@ -87,6 +88,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
VQModel,
)
from .controlnet import ControlNetModel
from .controlnet_flux import FluxControlNetModel
from .controlnet_hunyuan import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel
from .controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel
from .controlnet_sparsectrl import SparseControlNetModel
......
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..loaders import PeftAdapterMixin
from ..models.attention_processor import AttentionProcessor
from ..models.modeling_utils import ModelMixin
from ..utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from .controlnet import BaseOutput, zero_module
from .embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings
from .modeling_outputs import Transformer2DModelOutput
from .transformers.transformer_flux import EmbedND, FluxSingleTransformerBlock, FluxTransformerBlock
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class FluxControlNetOutput(BaseOutput):
controlnet_block_samples: Tuple[torch.Tensor]
controlnet_single_block_samples: Tuple[torch.Tensor]
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: List[int] = [16, 56, 56],
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pos_embed = EmbedND(dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope)
text_time_guidance_cls = (
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
)
self.time_text_embed = text_time_guidance_cls(
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
)
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for i in range(num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for i in range(num_single_layers)
]
)
# controlnet_blocks
self.controlnet_blocks = nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
self.controlnet_single_blocks = nn.ModuleList([])
for _ in range(len(self.single_transformer_blocks)):
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self):
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@classmethod
def from_transformer(
cls,
transformer,
num_layers=4,
num_single_layers=10,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
load_weights_from_transformer=True,
):
config = transformer.config
config["num_layers"] = num_layers
config["num_single_layers"] = num_single_layers
config["attention_head_dim"] = attention_head_dim
config["num_attention_heads"] = num_attention_heads
controlnet = cls(**config)
if load_weights_from_transformer:
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
controlnet.single_transformer_blocks.load_state_dict(
transformer.single_transformer_blocks.state_dict(), strict=False
)
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
return controlnet
def forward(
self,
hidden_states: torch.Tensor,
controlnet_cond: torch.Tensor,
conditioning_scale: float = 1.0,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
# add
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
temb = (
self.time_text_embed(timestep, pooled_projections)
if guidance is None
else self.time_text_embed(timestep, guidance, pooled_projections)
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pos_embed(ids)
block_samples = ()
for index_block, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
block_samples = block_samples + (hidden_states,)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
single_block_samples = ()
for index_block, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)
# controlnet block
controlnet_block_samples = ()
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
block_sample = controlnet_block(block_sample)
controlnet_block_samples = controlnet_block_samples + (block_sample,)
controlnet_single_block_samples = ()
for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
single_block_sample = controlnet_block(single_block_sample)
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
# scaling
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
#
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
controlnet_single_block_samples = (
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (controlnet_block_samples, controlnet_single_block_samples)
return FluxControlNetOutput(
controlnet_block_samples=controlnet_block_samples,
controlnet_single_block_samples=controlnet_single_block_samples,
)
# Copyright 2024 Black Forest Labs, The HuggingFace Team. All rights reserved.
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -15,6 +15,7 @@
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
......@@ -321,6 +322,8 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
......@@ -377,6 +380,7 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pos_embed(ids)
......@@ -410,6 +414,12 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
image_rotary_emb=image_rotary_emb,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
......@@ -440,6 +450,15 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
image_rotary_emb=image_rotary_emb,
)
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ controlnet_single_block_samples[index_block // interval_control]
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.norm_out(hidden_states, temb)
......
......@@ -124,7 +124,7 @@ else:
"AnimateDiffSparseControlNetPipeline",
"AnimateDiffVideoToVideoPipeline",
]
_import_structure["flux"] = ["FluxPipeline"]
_import_structure["flux"] = ["FluxPipeline", "FluxControlNetPipeline"]
_import_structure["audioldm"] = ["AudioLDMPipeline"]
_import_structure["audioldm2"] = [
"AudioLDM2Pipeline",
......@@ -493,7 +493,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
VersatileDiffusionTextToImagePipeline,
VQDiffusionPipeline,
)
from .flux import FluxPipeline
from .flux import FluxControlNetPipeline, FluxPipeline
from .hunyuandit import HunyuanDiTPipeline
from .i2vgen_xl import I2VGenXLPipeline
from .kandinsky import (
......
......@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_flux"] = ["FluxPipeline"]
_import_structure["pipeline_flux_controlnet"] = ["FluxControlNetPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
......@@ -31,6 +32,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_flux import FluxPipeline
from .pipeline_flux_controlnet import FluxControlNetPipeline
else:
import sys
......
This diff is collapsed.
......@@ -182,6 +182,21 @@ class DiTTransformer2DModel(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class FluxControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class FluxTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
......
......@@ -287,6 +287,21 @@ class CycleDiffusionPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class FluxControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class FluxPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
......
# coding=utf-8
# Copyright 2024 HuggingFace Inc and The InstantX Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
FluxControlNetPipeline,
FluxTransformer2DModel,
)
from diffusers.models import FluxControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_gpu,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = FluxControlNetPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
batch_params = frozenset(["prompt"])
def get_dummy_components(self):
torch.manual_seed(0)
transformer = FluxTransformer2DModel(
patch_size=1,
in_channels=16,
num_layers=1,
num_single_layers=1,
attention_head_dim=16,
num_attention_heads=2,
joint_attention_dim=32,
pooled_projection_dim=32,
axes_dims_rope=[4, 4, 8],
)
torch.manual_seed(0)
controlnet = FluxControlNetModel(
patch_size=1,
in_channels=16,
num_layers=1,
num_single_layers=1,
attention_head_dim=16,
num_attention_heads=2,
joint_attention_dim=32,
pooled_projection_dim=32,
axes_dims_rope=[4, 4, 8],
)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
torch.manual_seed(0)
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=4,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"transformer": transformer,
"vae": vae,
"controlnet": controlnet,
}
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
control_image = randn_tensor(
(1, 3, 32, 32),
generator=generator,
device=torch.device(device),
dtype=torch.float16,
)
controlnet_conditioning_scale = 0.5
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 3.5,
"output_type": "np",
"control_image": control_image,
"controlnet_conditioning_scale": controlnet_conditioning_scale,
}
return inputs
def test_controlnet_flux(self):
components = self.get_dummy_components()
flux_pipe = FluxControlNetPipeline(**components)
flux_pipe = flux_pipe.to(torch_device, dtype=torch.float16)
flux_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = flux_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array(
[0.7348633, 0.41333008, 0.6621094, 0.5444336, 0.47607422, 0.5859375, 0.44677734, 0.4506836, 0.40454102]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f"Expected: {expected_slice}, got: {image_slice.flatten()}"
@unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
def test_xformers_attention_forwardGenerator_pass(self):
pass
@slow
@require_torch_gpu
class FluxControlNetPipelineSlowTests(unittest.TestCase):
pipeline_class = FluxControlNetPipeline
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_canny(self):
controlnet = FluxControlNetModel.from_pretrained(
"InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16
)
pipe = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "A girl in city, 25 years old, cool, futuristic"
control_image = load_image(
"https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg"
)
output = pipe(
prompt,
control_image=control_image,
controlnet_conditioning_scale=0.6,
num_inference_steps=2,
guidance_scale=3.5,
output_type="np",
generator=generator,
)
image = output.images[0]
assert image.shape == (1024, 1024, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array(
[0.33007812, 0.33984375, 0.33984375, 0.328125, 0.34179688, 0.33984375, 0.30859375, 0.3203125, 0.3203125]
)
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment