Unverified Commit 5c53ca5e authored by Aryan's avatar Aryan Committed by GitHub
Browse files

[core] AnimateDiff SparseCtrl (#8897)

* initial sparse control model draft

* remove unnecessary implementation

* copy animatediff pipeline

* remove deprecated callbacks

* update

* update pipeline implementation progress

* make style

* make fix-copies

* update progress

* add partially working pipeline

* remove debug prints

* add model docs

* dummy objects

* improve motion lora conversion script

* fix bugs

* update docstrings

* remove unnecessary model params; docs

* address review comment

* add copied from to zero_module

* copy animatediff test

* add fast tests

* update docs

* update

* update pipeline docs

* fix expected slice values

* fix license

* remove get_down_block usage

* remove temporal_double_self_attention from get_down_block

* update

* update docs with org and documentation images

* make from_unet work in sparsecontrolnetmodel

* add latest freeinit test from #8969

* make fix-copies

* LoraLoaderMixin -> StableDiffsuionLoraLoaderMixin
parent 57a021d5
...@@ -267,6 +267,8 @@ ...@@ -267,6 +267,8 @@
title: HunyuanDiT2DControlNetModel title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sd3 - local: api/models/controlnet_sd3
title: SD3ControlNetModel title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
title: Models title: Models
- isExpanded: false - isExpanded: false
sections: sections:
......
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# SparseControlNetModel
SparseControlNetModel is an implementation of ControlNet for [AnimateDiff](https://arxiv.org/abs/2307.04725).
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
The SparseCtrl version of ControlNet was introduced in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The abstract from the paper is:
*The development of text-to-video (T2V), i.e., generating videos with a given text prompt, has been significantly advanced in recent years. However, relying solely on text prompts often results in ambiguous frame composition due to spatial uncertainty. The research community thus leverages the dense structure signals, e.g., per-frame depth/edge sequences, to enhance controllability, whose collection accordingly increases the burden of inference. In this work, we present SparseCtrl to enable flexible structure control with temporally sparse signals, requiring only one or a few inputs, as shown in Figure 1. It incorporates an additional condition encoder to process these sparse signals while leaving the pre-trained T2V model untouched. The proposed approach is compatible with various modalities, including sketches, depth maps, and RGB images, providing more practical control for video generation and promoting applications such as storyboarding, depth rendering, keyframe animation, and interpolation. Extensive experiments demonstrate the generalization of SparseCtrl on both original and personalized T2V generators. Codes and models will be publicly available at [this https URL](https://guoyww.github.io/projects/SparseCtrl).*
## Example for loading SparseControlNetModel
```python
import torch
from diffusers import SparseControlNetModel
# fp32 variant in float16
# 1. Scribble checkpoint
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16)
# 2. RGB checkpoint
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-rgb", torch_dtype=torch.float16)
# For loading fp16 variant, pass `variant="fp16"` as an additional parameter
```
## SparseControlNetModel
[[autodoc]] SparseControlNetModel
## SparseControlNetOutput
[[autodoc]] models.controlnet_sparsectrl.SparseControlNetOutput
...@@ -100,6 +100,189 @@ AnimateDiff tends to work better with finetuned Stable Diffusion models. If you ...@@ -100,6 +100,189 @@ AnimateDiff tends to work better with finetuned Stable Diffusion models. If you
</Tip> </Tip>
### AnimateDiffSparseControlNetPipeline
[SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The abstract from the paper is:
*The development of text-to-video (T2V), i.e., generating videos with a given text prompt, has been significantly advanced in recent years. However, relying solely on text prompts often results in ambiguous frame composition due to spatial uncertainty. The research community thus leverages the dense structure signals, e.g., per-frame depth/edge sequences, to enhance controllability, whose collection accordingly increases the burden of inference. In this work, we present SparseCtrl to enable flexible structure control with temporally sparse signals, requiring only one or a few inputs, as shown in Figure 1. It incorporates an additional condition encoder to process these sparse signals while leaving the pre-trained T2V model untouched. The proposed approach is compatible with various modalities, including sketches, depth maps, and RGB images, providing more practical control for video generation and promoting applications such as storyboarding, depth rendering, keyframe animation, and interpolation. Extensive experiments demonstrate the generalization of SparseCtrl on both original and personalized T2V generators. Codes and models will be publicly available at [this https URL](https://guoyww.github.io/projects/SparseCtrl).*
SparseCtrl introduces the following checkpoints for controlled text-to-video generation:
- [SparseCtrl Scribble](https://huggingface.co/guoyww/animatediff-sparsectrl-scribble)
- [SparseCtrl RGB](https://huggingface.co/guoyww/animatediff-sparsectrl-rgb)
#### Using SparseCtrl Scribble
```python
import torch
from diffusers import AnimateDiffSparseControlNetPipeline
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif, load_image
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
controlnet_id = "guoyww/animatediff-sparsectrl-scribble"
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
vae_id = "stabilityai/sd-vae-ft-mse"
device = "cuda"
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
scheduler = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
algorithm_type="dpmsolver++",
use_karras_sigmas=True,
)
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
model_id,
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
scheduler=scheduler,
torch_dtype=torch.float16,
).to(device)
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
pipe.fuse_lora(lora_scale=1.0)
prompt = "an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"
negative_prompt = "low quality, worst quality, letterboxed"
image_files = [
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png"
]
condition_frame_indices = [0, 8, 15]
conditioning_frames = [load_image(img_file) for img_file in image_files]
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
conditioning_frames=conditioning_frames,
controlnet_conditioning_scale=1.0,
controlnet_frame_indices=condition_frame_indices,
generator=torch.Generator().manual_seed(1337),
).frames[0]
export_to_gif(video, "output.gif")
```
Here are some sample outputs:
<table align="center">
<tr>
<center>
<b>an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality</b>
</center>
</tr>
<tr>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png" alt="scribble-1" />
</center>
</td>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png" alt="scribble-2" />
</center>
</td>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png" alt="scribble-3" />
</center>
</td>
</tr>
<tr>
<td colspan=3>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-sparsectrl-scribble-results.gif" alt="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality" />
</center>
</td>
</tr>
</table>
#### Using SparseCtrl RGB
```python
import torch
from diffusers import AnimateDiffSparseControlNetPipeline
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif, load_image
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
controlnet_id = "guoyww/animatediff-sparsectrl-rgb"
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
vae_id = "stabilityai/sd-vae-ft-mse"
device = "cuda"
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
scheduler = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
algorithm_type="dpmsolver++",
use_karras_sigmas=True,
)
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
model_id,
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
scheduler=scheduler,
torch_dtype=torch.float16,
).to(device)
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-firework.png")
video = pipe(
prompt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background",
negative_prompt="low quality, worst quality",
num_inference_steps=25,
conditioning_frames=image,
controlnet_frame_indices=[0],
controlnet_conditioning_scale=1.0,
generator=torch.Generator().manual_seed(42),
).frames[0]
export_to_gif(video, "output.gif")
```
Here are some sample outputs:
<table align="center">
<tr>
<center>
<b>closeup face photo of man in black clothes, night city street, bokeh, fireworks in background</b>
</center>
</tr>
<tr>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-firework.png" alt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background" />
</center>
</td>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-sparsectrl-rgb-result.gif" alt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background" />
</center>
</td>
</tr>
</table>
### AnimateDiffSDXLPipeline ### AnimateDiffSDXLPipeline
AnimateDiff can also be used with SDXL models. This is currently an experimental feature as only a beta release of the motion adapter checkpoint is available. AnimateDiff can also be used with SDXL models. This is currently an experimental feature as only a beta release of the motion adapter checkpoint is available.
...@@ -571,7 +754,6 @@ ckpt_path = "https://huggingface.co/Lightricks/LongAnimateDiff/blob/main/lt_long ...@@ -571,7 +754,6 @@ ckpt_path = "https://huggingface.co/Lightricks/LongAnimateDiff/blob/main/lt_long
adapter = MotionAdapter.from_single_file(ckpt_path, torch_dtype=torch.float16) adapter = MotionAdapter.from_single_file(ckpt_path, torch_dtype=torch.float16)
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter) pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter)
``` ```
## AnimateDiffPipeline ## AnimateDiffPipeline
...@@ -580,6 +762,12 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt ...@@ -580,6 +762,12 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt
- all - all
- __call__ - __call__
## AnimateDiffSparseControlNetPipeline
[[autodoc]] AnimateDiffSparseControlNetPipeline
- all
- __call__
## AnimateDiffSDXLPipeline ## AnimateDiffSDXLPipeline
[[autodoc]] AnimateDiffSDXLPipeline [[autodoc]] AnimateDiffSDXLPipeline
......
import argparse import argparse
import os
import torch import torch
from huggingface_hub import create_repo, upload_folder
from safetensors.torch import load_file, save_file from safetensors.torch import load_file, save_file
...@@ -25,8 +27,14 @@ def convert_motion_module(original_state_dict): ...@@ -25,8 +27,14 @@ def convert_motion_module(original_state_dict):
def get_args(): def get_args():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True) parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint")
parser.add_argument("--output_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True, help="Path to output directory")
parser.add_argument(
"--push_to_hub",
action="store_true",
default=False,
help="Whether to push the converted model to the HF or not",
)
return parser.parse_args() return parser.parse_args()
...@@ -51,4 +59,11 @@ if __name__ == "__main__": ...@@ -51,4 +59,11 @@ if __name__ == "__main__":
continue continue
output_dict.update({f"unet.{module_name}": params}) output_dict.update({f"unet.{module_name}": params})
save_file(output_dict, f"{args.output_path}/diffusion_pytorch_model.safetensors") os.makedirs(args.output_path, exist_ok=True)
filepath = os.path.join(args.output_path, "diffusion_pytorch_model.safetensors")
save_file(output_dict, filepath)
if args.push_to_hub:
repo_id = create_repo(args.output_path, exist_ok=True).repo_id
upload_folder(repo_id=repo_id, folder_path=args.output_path, repo_type="model")
import argparse
from typing import Dict
import torch
import torch.nn as nn
from diffusers import SparseControlNetModel
KEYS_RENAME_MAPPING = {
".attention_blocks.0": ".attn1",
".attention_blocks.1": ".attn2",
".attn1.pos_encoder": ".pos_embed",
".ff_norm": ".norm3",
".norms.0": ".norm1",
".norms.1": ".norm2",
".temporal_transformer": "",
}
def convert(original_state_dict: Dict[str, nn.Module]) -> Dict[str, nn.Module]:
converted_state_dict = {}
for key in list(original_state_dict.keys()):
renamed_key = key
for new_name, old_name in KEYS_RENAME_MAPPING.items():
renamed_key = renamed_key.replace(new_name, old_name)
converted_state_dict[renamed_key] = original_state_dict.pop(key)
return converted_state_dict
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint")
parser.add_argument("--output_path", type=str, required=True, help="Path to output directory")
parser.add_argument(
"--max_motion_seq_length",
type=int,
default=32,
help="Max motion sequence length supported by the motion adapter",
)
parser.add_argument(
"--conditioning_channels", type=int, default=4, help="Number of channels in conditioning input to controlnet"
)
parser.add_argument(
"--use_simplified_condition_embedding",
action="store_true",
default=False,
help="Whether or not to use simplified condition embedding. When `conditioning_channels==4` i.e. latent inputs, set this to `True`. When `conditioning_channels==3` i.e. image inputs, set this to `False`",
)
parser.add_argument(
"--save_fp16",
action="store_true",
default=False,
help="Whether or not to save model in fp16 precision along with fp32",
)
parser.add_argument(
"--push_to_hub", action="store_true", default=False, help="Whether or not to push saved model to the HF hub"
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
state_dict = torch.load(args.ckpt_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict: dict = state_dict["state_dict"]
controlnet = SparseControlNetModel(
conditioning_channels=args.conditioning_channels,
motion_max_seq_length=args.max_motion_seq_length,
use_simplified_condition_embedding=args.use_simplified_condition_embedding,
)
state_dict = convert(state_dict)
controlnet.load_state_dict(state_dict, strict=True)
controlnet.save_pretrained(args.output_path, push_to_hub=args.push_to_hub)
if args.save_fp16:
controlnet = controlnet.to(dtype=torch.float16)
controlnet.save_pretrained(args.output_path, variant="fp16", push_to_hub=args.push_to_hub)
...@@ -99,6 +99,7 @@ else: ...@@ -99,6 +99,7 @@ else:
"SD3ControlNetModel", "SD3ControlNetModel",
"SD3MultiControlNetModel", "SD3MultiControlNetModel",
"SD3Transformer2DModel", "SD3Transformer2DModel",
"SparseControlNetModel",
"StableCascadeUNet", "StableCascadeUNet",
"T2IAdapter", "T2IAdapter",
"T5FilmDecoder", "T5FilmDecoder",
...@@ -231,6 +232,7 @@ else: ...@@ -231,6 +232,7 @@ else:
"AmusedPipeline", "AmusedPipeline",
"AnimateDiffPipeline", "AnimateDiffPipeline",
"AnimateDiffSDXLPipeline", "AnimateDiffSDXLPipeline",
"AnimateDiffSparseControlNetPipeline",
"AnimateDiffVideoToVideoPipeline", "AnimateDiffVideoToVideoPipeline",
"AudioLDM2Pipeline", "AudioLDM2Pipeline",
"AudioLDM2ProjectionModel", "AudioLDM2ProjectionModel",
...@@ -533,6 +535,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -533,6 +535,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
SD3ControlNetModel, SD3ControlNetModel,
SD3MultiControlNetModel, SD3MultiControlNetModel,
SD3Transformer2DModel, SD3Transformer2DModel,
SparseControlNetModel,
T2IAdapter, T2IAdapter,
T5FilmDecoder, T5FilmDecoder,
Transformer2DModel, Transformer2DModel,
...@@ -645,6 +648,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -645,6 +648,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AmusedPipeline, AmusedPipeline,
AnimateDiffPipeline, AnimateDiffPipeline,
AnimateDiffSDXLPipeline, AnimateDiffSDXLPipeline,
AnimateDiffSparseControlNetPipeline,
AnimateDiffVideoToVideoPipeline, AnimateDiffVideoToVideoPipeline,
AudioLDM2Pipeline, AudioLDM2Pipeline,
AudioLDM2ProjectionModel, AudioLDM2ProjectionModel,
......
...@@ -35,6 +35,7 @@ if is_torch_available(): ...@@ -35,6 +35,7 @@ if is_torch_available():
_import_structure["controlnet"] = ["ControlNetModel"] _import_structure["controlnet"] = ["ControlNetModel"]
_import_structure["controlnet_hunyuan"] = ["HunyuanDiT2DControlNetModel", "HunyuanDiT2DMultiControlNetModel"] _import_structure["controlnet_hunyuan"] = ["HunyuanDiT2DControlNetModel", "HunyuanDiT2DMultiControlNetModel"]
_import_structure["controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"] _import_structure["controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"]
_import_structure["controlnet_sparsectrl"] = ["SparseControlNetModel"]
_import_structure["controlnet_xs"] = ["ControlNetXSAdapter", "UNetControlNetXSModel"] _import_structure["controlnet_xs"] = ["ControlNetXSAdapter", "UNetControlNetXSModel"]
_import_structure["embeddings"] = ["ImageProjection"] _import_structure["embeddings"] = ["ImageProjection"]
_import_structure["modeling_utils"] = ["ModelMixin"] _import_structure["modeling_utils"] = ["ModelMixin"]
...@@ -81,6 +82,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -81,6 +82,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .controlnet import ControlNetModel from .controlnet import ControlNetModel
from .controlnet_hunyuan import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel from .controlnet_hunyuan import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel
from .controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel from .controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel
from .controlnet_sparsectrl import SparseControlNetModel
from .controlnet_xs import ControlNetXSAdapter, UNetControlNetXSModel from .controlnet_xs import ControlNetXSAdapter, UNetControlNetXSModel
from .embeddings import ImageProjection from .embeddings import ImageProjection
from .modeling_utils import ModelMixin from .modeling_utils import ModelMixin
......
...@@ -830,7 +830,6 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin): ...@@ -830,7 +830,6 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
sample = self.mid_block(sample, emb) sample = self.mid_block(sample, emb)
# 5. Control net blocks # 5. Control net blocks
controlnet_down_block_res_samples = () controlnet_down_block_res_samples = ()
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
......
This diff is collapsed.
...@@ -966,6 +966,7 @@ class DownBlockMotion(nn.Module): ...@@ -966,6 +966,7 @@ class DownBlockMotion(nn.Module):
temporal_num_attention_heads: Union[int, Tuple[int]] = 1, temporal_num_attention_heads: Union[int, Tuple[int]] = 1,
temporal_cross_attention_dim: Optional[int] = None, temporal_cross_attention_dim: Optional[int] = None,
temporal_max_seq_length: int = 32, temporal_max_seq_length: int = 32,
temporal_double_self_attention: bool = True,
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
): ):
super().__init__() super().__init__()
...@@ -1016,6 +1017,7 @@ class DownBlockMotion(nn.Module): ...@@ -1016,6 +1017,7 @@ class DownBlockMotion(nn.Module):
positional_embeddings="sinusoidal", positional_embeddings="sinusoidal",
num_positional_embeddings=temporal_max_seq_length, num_positional_embeddings=temporal_max_seq_length,
attention_head_dim=out_channels // temporal_num_attention_heads[i], attention_head_dim=out_channels // temporal_num_attention_heads[i],
double_self_attention=temporal_double_self_attention,
) )
) )
...@@ -1118,6 +1120,7 @@ class CrossAttnDownBlockMotion(nn.Module): ...@@ -1118,6 +1120,7 @@ class CrossAttnDownBlockMotion(nn.Module):
temporal_num_attention_heads: int = 8, temporal_num_attention_heads: int = 8,
temporal_max_seq_length: int = 32, temporal_max_seq_length: int = 32,
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
temporal_double_self_attention: bool = True,
): ):
super().__init__() super().__init__()
resnets = [] resnets = []
...@@ -1199,6 +1202,7 @@ class CrossAttnDownBlockMotion(nn.Module): ...@@ -1199,6 +1202,7 @@ class CrossAttnDownBlockMotion(nn.Module):
positional_embeddings="sinusoidal", positional_embeddings="sinusoidal",
num_positional_embeddings=temporal_max_seq_length, num_positional_embeddings=temporal_max_seq_length,
attention_head_dim=out_channels // temporal_num_attention_heads, attention_head_dim=out_channels // temporal_num_attention_heads,
double_self_attention=temporal_double_self_attention,
) )
) )
......
...@@ -119,6 +119,7 @@ else: ...@@ -119,6 +119,7 @@ else:
_import_structure["animatediff"] = [ _import_structure["animatediff"] = [
"AnimateDiffPipeline", "AnimateDiffPipeline",
"AnimateDiffSDXLPipeline", "AnimateDiffSDXLPipeline",
"AnimateDiffSparseControlNetPipeline",
"AnimateDiffVideoToVideoPipeline", "AnimateDiffVideoToVideoPipeline",
] ]
_import_structure["audioldm"] = ["AudioLDMPipeline"] _import_structure["audioldm"] = ["AudioLDMPipeline"]
...@@ -413,7 +414,12 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -413,7 +414,12 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ..utils.dummy_torch_and_transformers_objects import * from ..utils.dummy_torch_and_transformers_objects import *
else: else:
from .amused import AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline from .amused import AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline
from .animatediff import AnimateDiffPipeline, AnimateDiffSDXLPipeline, AnimateDiffVideoToVideoPipeline from .animatediff import (
AnimateDiffPipeline,
AnimateDiffSDXLPipeline,
AnimateDiffSparseControlNetPipeline,
AnimateDiffVideoToVideoPipeline,
)
from .audioldm import AudioLDMPipeline from .audioldm import AudioLDMPipeline
from .audioldm2 import ( from .audioldm2 import (
AudioLDM2Pipeline, AudioLDM2Pipeline,
......
...@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable: ...@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable:
else: else:
_import_structure["pipeline_animatediff"] = ["AnimateDiffPipeline"] _import_structure["pipeline_animatediff"] = ["AnimateDiffPipeline"]
_import_structure["pipeline_animatediff_sdxl"] = ["AnimateDiffSDXLPipeline"] _import_structure["pipeline_animatediff_sdxl"] = ["AnimateDiffSDXLPipeline"]
_import_structure["pipeline_animatediff_sparsectrl"] = ["AnimateDiffSparseControlNetPipeline"]
_import_structure["pipeline_animatediff_video2video"] = ["AnimateDiffVideoToVideoPipeline"] _import_structure["pipeline_animatediff_video2video"] = ["AnimateDiffVideoToVideoPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
...@@ -35,6 +36,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: ...@@ -35,6 +36,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
else: else:
from .pipeline_animatediff import AnimateDiffPipeline from .pipeline_animatediff import AnimateDiffPipeline
from .pipeline_animatediff_sdxl import AnimateDiffSDXLPipeline from .pipeline_animatediff_sdxl import AnimateDiffSDXLPipeline
from .pipeline_animatediff_sparsectrl import AnimateDiffSparseControlNetPipeline
from .pipeline_animatediff_video2video import AnimateDiffVideoToVideoPipeline from .pipeline_animatediff_video2video import AnimateDiffVideoToVideoPipeline
from .pipeline_output import AnimateDiffPipelineOutput from .pipeline_output import AnimateDiffPipelineOutput
......
...@@ -362,6 +362,21 @@ class SD3Transformer2DModel(metaclass=DummyObject): ...@@ -362,6 +362,21 @@ class SD3Transformer2DModel(metaclass=DummyObject):
requires_backends(cls, ["torch"]) requires_backends(cls, ["torch"])
class SparseControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class T2IAdapter(metaclass=DummyObject): class T2IAdapter(metaclass=DummyObject):
_backends = ["torch"] _backends = ["torch"]
......
...@@ -107,6 +107,21 @@ class AnimateDiffSDXLPipeline(metaclass=DummyObject): ...@@ -107,6 +107,21 @@ class AnimateDiffSDXLPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"]) requires_backends(cls, ["torch", "transformers"])
class AnimateDiffSparseControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class AnimateDiffVideoToVideoPipeline(metaclass=DummyObject): class AnimateDiffVideoToVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"] _backends = ["torch", "transformers"]
......
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AnimateDiffSparseControlNetPipeline,
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
LCMScheduler,
MotionAdapter,
SparseControlNetModel,
StableDiffusionPipeline,
UNet2DConditionModel,
UNetMotionModel,
)
from diffusers.utils import logging
from diffusers.utils.testing_utils import torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
IPAdapterTesterMixin,
PipelineFromPipeTesterMixin,
PipelineTesterMixin,
SDFunctionTesterMixin,
)
def to_np(tensor):
if isinstance(tensor, torch.Tensor):
tensor = tensor.detach().cpu().numpy()
return tensor
class AnimateDiffSparseControlNetPipelineFastTests(
IPAdapterTesterMixin, SDFunctionTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase
):
pipeline_class = AnimateDiffSparseControlNetPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
def get_dummy_components(self):
cross_attention_dim = 8
block_out_channels = (8, 8)
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=block_out_channels,
layers_per_block=2,
sample_size=8,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=cross_attention_dim,
norm_num_groups=2,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="linear",
clip_sample=False,
)
torch.manual_seed(0)
controlnet = SparseControlNetModel(
block_out_channels=block_out_channels,
layers_per_block=2,
in_channels=4,
conditioning_channels=3,
down_block_types=("CrossAttnDownBlockMotion", "DownBlockMotion"),
cross_attention_dim=cross_attention_dim,
conditioning_embedding_out_channels=(8, 8),
norm_num_groups=1,
use_simplified_condition_embedding=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=block_out_channels,
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
norm_num_groups=2,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=cross_attention_dim,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
motion_adapter = MotionAdapter(
block_out_channels=block_out_channels,
motion_layers_per_block=2,
motion_norm_num_groups=2,
motion_num_attention_heads=4,
)
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"motion_adapter": motion_adapter,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"feature_extractor": None,
"image_encoder": None,
}
return components
def get_dummy_inputs(self, device, seed: int = 0, num_frames: int = 2):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
video_height = 32
video_width = 32
conditioning_frames = [Image.new("RGB", (video_width, video_height))] * num_frames
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"conditioning_frames": conditioning_frames,
"controlnet_frame_indices": list(range(num_frames)),
"generator": generator,
"num_inference_steps": 2,
"num_frames": num_frames,
"guidance_scale": 7.5,
"output_type": "pt",
}
return inputs
def test_from_pipe_consistent_config(self):
assert self.original_pipeline_class == StableDiffusionPipeline
original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe"
original_kwargs = {"requires_safety_checker": False}
# create original_pipeline_class(sd)
pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)
# original_pipeline_class(sd) -> pipeline_class
pipe_components = self.get_dummy_components()
pipe_additional_components = {}
for name, component in pipe_components.items():
if name not in pipe_original.components:
pipe_additional_components[name] = component
pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)
# pipeline_class -> original_pipeline_class(sd)
original_pipe_additional_components = {}
for name, component in pipe_original.components.items():
if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
original_pipe_additional_components[name] = component
pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)
# compare the config
original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
assert original_config_2 == original_config
def test_motion_unet_loading(self):
components = self.get_dummy_components()
pipe = AnimateDiffSparseControlNetPipeline(**components)
assert isinstance(pipe.unet, UNetMotionModel)
@unittest.skip("Attention slicing is not enabled in this pipeline")
def test_attention_slicing_forward_pass(self):
pass
def test_ip_adapter_single(self):
expected_pipe_slice = None
if torch_device == "cpu":
expected_pipe_slice = np.array(
[
0.6604,
0.4099,
0.4928,
0.5706,
0.5096,
0.5012,
0.6051,
0.5169,
0.5021,
0.4864,
0.4261,
0.5779,
0.5822,
0.4049,
0.5253,
0.6160,
0.4150,
0.5155,
]
)
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)
def test_dict_tuple_outputs_equivalent(self):
expected_slice = None
if torch_device == "cpu":
expected_slice = np.array([0.6051, 0.5169, 0.5021, 0.6160, 0.4150, 0.5155])
return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice)
def test_inference_batch_single_identical(
self,
batch_size=2,
expected_max_diff=1e-4,
additional_params_copy_to_batched_inputs=["num_inference_steps"],
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for components in pipe.components.values():
if hasattr(components, "set_default_attn_processor"):
components.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is has been used in self.get_dummy_inputs
inputs["generator"] = self.get_generator(0)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
batched_inputs = {}
batched_inputs.update(inputs)
for name in self.batch_params:
if name not in inputs:
continue
value = inputs[name]
if name == "prompt":
len_prompt = len(value)
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
batched_inputs[name][-1] = 100 * "very long"
else:
batched_inputs[name] = batch_size * [value]
if "generator" in inputs:
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
if "batch_size" in inputs:
batched_inputs["batch_size"] = batch_size
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
output = pipe(**inputs)
output_batch = pipe(**batched_inputs)
assert output_batch[0].shape[0] == batch_size
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
assert max_diff < expected_max_diff
def test_inference_batch_single_identical_use_simplified_condition_embedding_true(
self,
batch_size=2,
expected_max_diff=1e-4,
additional_params_copy_to_batched_inputs=["num_inference_steps"],
):
components = self.get_dummy_components()
torch.manual_seed(0)
old_controlnet = components.pop("controlnet")
components["controlnet"] = SparseControlNetModel.from_config(
old_controlnet.config, conditioning_channels=4, use_simplified_condition_embedding=True
)
pipe = self.pipeline_class(**components)
for components in pipe.components.values():
if hasattr(components, "set_default_attn_processor"):
components.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is has been used in self.get_dummy_inputs
inputs["generator"] = self.get_generator(0)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
batched_inputs = {}
batched_inputs.update(inputs)
for name in self.batch_params:
if name not in inputs:
continue
value = inputs[name]
if name == "prompt":
len_prompt = len(value)
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
batched_inputs[name][-1] = 100 * "very long"
else:
batched_inputs[name] = batch_size * [value]
if "generator" in inputs:
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
if "batch_size" in inputs:
batched_inputs["batch_size"] = batch_size
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
output = pipe(**inputs)
output_batch = pipe(**batched_inputs)
assert output_batch[0].shape[0] == batch_size
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
assert max_diff < expected_max_diff
@unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
def test_to_device(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to("cpu")
# pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components
model_devices = [
component.device.type for component in pipe.components.values() if hasattr(component, "device")
]
self.assertTrue(all(device == "cpu" for device in model_devices))
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
self.assertTrue(np.isnan(output_cpu).sum() == 0)
pipe.to("cuda")
model_devices = [
component.device.type for component in pipe.components.values() if hasattr(component, "device")
]
self.assertTrue(all(device == "cuda" for device in model_devices))
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
def test_to_dtype(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
# pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))
pipe.to(dtype=torch.float16)
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))
def test_prompt_embeds(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
inputs.pop("prompt")
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
pipe(**inputs)
def test_free_init(self):
components = self.get_dummy_components()
pipe: AnimateDiffSparseControlNetPipeline = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
inputs_normal = self.get_dummy_inputs(torch_device)
frames_normal = pipe(**inputs_normal).frames[0]
pipe.enable_free_init(
num_iters=2,
use_fast_sampling=True,
method="butterworth",
order=4,
spatial_stop_frequency=0.25,
temporal_stop_frequency=0.25,
)
inputs_enable_free_init = self.get_dummy_inputs(torch_device)
frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0]
pipe.disable_free_init()
inputs_disable_free_init = self.get_dummy_inputs(torch_device)
frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0]
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max()
self.assertGreater(
sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results"
)
self.assertLess(
max_diff_disabled,
1e-4,
"Disabling of FreeInit should lead to results similar to the default pipeline results",
)
def test_free_init_with_schedulers(self):
components = self.get_dummy_components()
pipe: AnimateDiffSparseControlNetPipeline = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
inputs_normal = self.get_dummy_inputs(torch_device)
frames_normal = pipe(**inputs_normal).frames[0]
schedulers_to_test = [
DPMSolverMultistepScheduler.from_config(
components["scheduler"].config,
timestep_spacing="linspace",
beta_schedule="linear",
algorithm_type="dpmsolver++",
steps_offset=1,
clip_sample=False,
),
LCMScheduler.from_config(
components["scheduler"].config,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
clip_sample=False,
),
]
components.pop("scheduler")
for scheduler in schedulers_to_test:
components["scheduler"] = scheduler
pipe: AnimateDiffSparseControlNetPipeline = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
pipe.enable_free_init(num_iters=2, use_fast_sampling=False)
inputs = self.get_dummy_inputs(torch_device)
frames_enable_free_init = pipe(**inputs).frames[0]
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
self.assertGreater(
sum_enabled,
1e1,
"Enabling of FreeInit should lead to results different from the default pipeline results",
)
def test_vae_slicing(self):
return super().test_vae_slicing(image_count=2)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment