Unverified Commit 49644bab authored by Yudong Jin's avatar Yudong Jin Committed by GitHub
Browse files

Fix the test script in examples/text_to_image/README.md (#6209)



* Update examples/text_to_image/README.md

* Update examples/text_to_image/README.md
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>

---------
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
parent 56b3b216
......@@ -101,8 +101,8 @@ accelerate launch --mixed_precision="fp16" train_text_to_image.py \
Once the training is finished the model will be saved in the `output_dir` specified in the command. In this example it's `sd-pokemon-model`. To load the fine-tuned model for inference just pass that path to `StableDiffusionPipeline`
```python
import torch
from diffusers import StableDiffusionPipeline
model_path = "path_to_saved_model"
......@@ -114,12 +114,13 @@ image.save("yoda-pokemon.png")
```
Checkpoints only save the unet, so to run inference from a checkpoint, just load the unet
```python
import torch
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
model_path = "path_to_saved_model"
unet = UNet2DConditionModel.from_pretrained(model_path + "/checkpoint-<N>/unet")
unet = UNet2DConditionModel.from_pretrained(model_path + "/checkpoint-<N>/unet", torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained("<initial model>", unet=unet, torch_dtype=torch.float16)
pipe.to("cuda")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment