Unverified Commit 3a0d3da6 authored by nickkolok's avatar nickkolok Committed by GitHub
Browse files

Fix a typo: bfloa16 -> bfloat16 (#2243)

parent 22c1ba56
...@@ -316,7 +316,7 @@ class StableDiffusionKDiffusionPipeline(DiffusionPipeline): ...@@ -316,7 +316,7 @@ class StableDiffusionKDiffusionPipeline(DiffusionPipeline):
latents = 1 / self.vae.config.scaling_factor * latents latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1) image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image return image
......
...@@ -313,7 +313,7 @@ class StableDiffusionUpscalePipeline(DiffusionPipeline): ...@@ -313,7 +313,7 @@ class StableDiffusionUpscalePipeline(DiffusionPipeline):
latents = 1 / self.vae.config.scaling_factor * latents latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1) image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image return image
......
...@@ -52,7 +52,7 @@ class StableDiffusionSafetyChecker(PreTrainedModel): ...@@ -52,7 +52,7 @@ class StableDiffusionSafetyChecker(PreTrainedModel):
pooled_output = self.vision_model(clip_input)[1] # pooled_output pooled_output = self.vision_model(clip_input)[1] # pooled_output
image_embeds = self.visual_projection(pooled_output) image_embeds = self.visual_projection(pooled_output)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy()
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
......
...@@ -367,7 +367,7 @@ class StableDiffusionPipelineSafe(DiffusionPipeline): ...@@ -367,7 +367,7 @@ class StableDiffusionPipelineSafe(DiffusionPipeline):
latents = 1 / self.vae.config.scaling_factor * latents latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1) image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image return image
......
...@@ -51,7 +51,7 @@ class SafeStableDiffusionSafetyChecker(PreTrainedModel): ...@@ -51,7 +51,7 @@ class SafeStableDiffusionSafetyChecker(PreTrainedModel):
pooled_output = self.vision_model(clip_input)[1] # pooled_output pooled_output = self.vision_model(clip_input)[1] # pooled_output
image_embeds = self.visual_projection(pooled_output) image_embeds = self.visual_projection(pooled_output)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy()
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
......
...@@ -333,7 +333,7 @@ class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline): ...@@ -333,7 +333,7 @@ class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
latents = 1 / self.vae.config.scaling_factor * latents latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1) image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image return image
......
...@@ -193,7 +193,7 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline): ...@@ -193,7 +193,7 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline):
latents = 1 / self.vae.config.scaling_factor * latents latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1) image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image return image
......
...@@ -250,7 +250,7 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline): ...@@ -250,7 +250,7 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline):
latents = 1 / self.vae.config.scaling_factor * latents latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1) image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image return image
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment