Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
363d1ab7
Unverified
Commit
363d1ab7
authored
Mar 07, 2025
by
hlky
Committed by
GitHub
Mar 07, 2025
Browse files
Wan VAE move scaling to pipeline (#10998)
parent
6a0137eb
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
31 additions
and
13 deletions
+31
-13
src/diffusers/models/autoencoders/autoencoder_kl_wan.py
src/diffusers/models/autoencoders/autoencoder_kl_wan.py
+2
-13
src/diffusers/pipelines/wan/pipeline_wan.py
src/diffusers/pipelines/wan/pipeline_wan.py
+9
-0
src/diffusers/pipelines/wan/pipeline_wan_i2v.py
src/diffusers/pipelines/wan/pipeline_wan_i2v.py
+20
-0
No files found.
src/diffusers/models/autoencoders/autoencoder_kl_wan.py
View file @
363d1ab7
...
...
@@ -715,11 +715,6 @@ class AutoencoderKLWan(ModelMixin, ConfigMixin):
)
->
None
:
super
().
__init__
()
# Store normalization parameters as tensors
self
.
mean
=
torch
.
tensor
(
latents_mean
)
self
.
std
=
torch
.
tensor
(
latents_std
)
self
.
scale
=
torch
.
stack
([
self
.
mean
,
1.0
/
self
.
std
])
# Shape: [2, C]
self
.
z_dim
=
z_dim
self
.
temperal_downsample
=
temperal_downsample
self
.
temperal_upsample
=
temperal_downsample
[::
-
1
]
...
...
@@ -751,7 +746,6 @@ class AutoencoderKLWan(ModelMixin, ConfigMixin):
self
.
_enc_feat_map
=
[
None
]
*
self
.
_enc_conv_num
def
_encode
(
self
,
x
:
torch
.
Tensor
)
->
torch
.
Tensor
:
scale
=
self
.
scale
.
type_as
(
x
)
self
.
clear_cache
()
## cache
t
=
x
.
shape
[
2
]
...
...
@@ -770,8 +764,6 @@ class AutoencoderKLWan(ModelMixin, ConfigMixin):
enc
=
self
.
quant_conv
(
out
)
mu
,
logvar
=
enc
[:,
:
self
.
z_dim
,
:,
:,
:],
enc
[:,
self
.
z_dim
:,
:,
:,
:]
mu
=
(
mu
-
scale
[
0
].
view
(
1
,
self
.
z_dim
,
1
,
1
,
1
))
*
scale
[
1
].
view
(
1
,
self
.
z_dim
,
1
,
1
,
1
)
logvar
=
(
logvar
-
scale
[
0
].
view
(
1
,
self
.
z_dim
,
1
,
1
,
1
))
*
scale
[
1
].
view
(
1
,
self
.
z_dim
,
1
,
1
,
1
)
enc
=
torch
.
cat
([
mu
,
logvar
],
dim
=
1
)
self
.
clear_cache
()
return
enc
...
...
@@ -798,10 +790,8 @@ class AutoencoderKLWan(ModelMixin, ConfigMixin):
return
(
posterior
,)
return
AutoencoderKLOutput
(
latent_dist
=
posterior
)
def
_decode
(
self
,
z
:
torch
.
Tensor
,
scale
,
return_dict
:
bool
=
True
)
->
Union
[
DecoderOutput
,
torch
.
Tensor
]:
def
_decode
(
self
,
z
:
torch
.
Tensor
,
return_dict
:
bool
=
True
)
->
Union
[
DecoderOutput
,
torch
.
Tensor
]:
self
.
clear_cache
()
# z: [b,c,t,h,w]
z
=
z
/
scale
[
1
].
view
(
1
,
self
.
z_dim
,
1
,
1
,
1
)
+
scale
[
0
].
view
(
1
,
self
.
z_dim
,
1
,
1
,
1
)
iter_
=
z
.
shape
[
2
]
x
=
self
.
post_quant_conv
(
z
)
...
...
@@ -835,8 +825,7 @@ class AutoencoderKLWan(ModelMixin, ConfigMixin):
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
scale
=
self
.
scale
.
type_as
(
z
)
decoded
=
self
.
_decode
(
z
,
scale
).
sample
decoded
=
self
.
_decode
(
z
).
sample
if
not
return_dict
:
return
(
decoded
,)
...
...
src/diffusers/pipelines/wan/pipeline_wan.py
View file @
363d1ab7
...
...
@@ -563,6 +563,15 @@ class WanPipeline(DiffusionPipeline, WanLoraLoaderMixin):
if
not
output_type
==
"latent"
:
latents
=
latents
.
to
(
self
.
vae
.
dtype
)
latents_mean
=
(
torch
.
tensor
(
self
.
vae
.
config
.
latents_mean
)
.
view
(
1
,
self
.
vae
.
config
.
z_dim
,
1
,
1
,
1
)
.
to
(
latents
.
device
,
latents
.
dtype
)
)
latents_std
=
1.0
/
torch
.
tensor
(
self
.
vae
.
config
.
latents_std
).
view
(
1
,
self
.
vae
.
config
.
z_dim
,
1
,
1
,
1
).
to
(
latents
.
device
,
latents
.
dtype
)
latents
=
latents
/
latents_std
+
latents_mean
video
=
self
.
vae
.
decode
(
latents
,
return_dict
=
False
)[
0
]
video
=
self
.
video_processor
.
postprocess_video
(
video
,
output_type
=
output_type
)
else
:
...
...
src/diffusers/pipelines/wan/pipeline_wan_i2v.py
View file @
363d1ab7
...
...
@@ -392,6 +392,17 @@ class WanImageToVideoPipeline(DiffusionPipeline, WanLoraLoaderMixin):
latent_condition
=
retrieve_latents
(
self
.
vae
.
encode
(
video_condition
),
generator
)
latent_condition
=
latent_condition
.
repeat
(
batch_size
,
1
,
1
,
1
,
1
)
latents_mean
=
(
torch
.
tensor
(
self
.
vae
.
config
.
latents_mean
)
.
view
(
1
,
self
.
vae
.
config
.
z_dim
,
1
,
1
,
1
)
.
to
(
latents
.
device
,
latents
.
dtype
)
)
latents_std
=
1.0
/
torch
.
tensor
(
self
.
vae
.
config
.
latents_std
).
view
(
1
,
self
.
vae
.
config
.
z_dim
,
1
,
1
,
1
).
to
(
latents
.
device
,
latents
.
dtype
)
latent_condition
=
(
latent_condition
-
latents_mean
)
*
latents_std
mask_lat_size
=
torch
.
ones
(
batch_size
,
1
,
num_frames
,
latent_height
,
latent_width
)
mask_lat_size
[:,
:,
list
(
range
(
1
,
num_frames
))]
=
0
first_frame_mask
=
mask_lat_size
[:,
:,
0
:
1
]
...
...
@@ -654,6 +665,15 @@ class WanImageToVideoPipeline(DiffusionPipeline, WanLoraLoaderMixin):
if
not
output_type
==
"latent"
:
latents
=
latents
.
to
(
self
.
vae
.
dtype
)
latents_mean
=
(
torch
.
tensor
(
self
.
vae
.
config
.
latents_mean
)
.
view
(
1
,
self
.
vae
.
config
.
z_dim
,
1
,
1
,
1
)
.
to
(
latents
.
device
,
latents
.
dtype
)
)
latents_std
=
1.0
/
torch
.
tensor
(
self
.
vae
.
config
.
latents_std
).
view
(
1
,
self
.
vae
.
config
.
z_dim
,
1
,
1
,
1
).
to
(
latents
.
device
,
latents
.
dtype
)
latents
=
latents
/
latents_std
+
latents_mean
video
=
self
.
vae
.
decode
(
latents
,
return_dict
=
False
)[
0
]
video
=
self
.
video_processor
.
postprocess_video
(
video
,
output_type
=
output_type
)
else
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment