"src/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "2261510bbcf43525d556238d6b0c24112f348a83"
Unverified Commit 34d14d78 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[MultiControlNet] Allow save and load (#3747)

* [MultiControlNet] Allow save and load

* Correct more

* [MultiControlNet] Allow save and load

* make style

* Apply suggestions from code review
parent ef959071
from typing import Any, Dict, List, Optional, Tuple, Union import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch import torch
from torch import nn from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin from ...models.modeling_utils import ModelMixin
from ...utils import logging
logger = logging.get_logger(__name__)
class MultiControlNetModel(ModelMixin): class MultiControlNetModel(ModelMixin):
...@@ -64,3 +69,117 @@ class MultiControlNetModel(ModelMixin): ...@@ -64,3 +69,117 @@ class MultiControlNetModel(ModelMixin):
mid_block_res_sample += mid_sample mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample return down_block_res_samples, mid_block_res_sample
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
save_function: Callable = None,
safe_serialization: bool = False,
variant: Optional[str] = None,
):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
`[`~pipelines.controlnet.MultiControlNetModel.from_pretrained`]` class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful when in distributed training like
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
the main process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
need to replace `torch.save` by another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `False`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
variant (`str`, *optional*):
If specified, weights are saved in the format pytorch_model.<variant>.bin.
"""
idx = 0
model_path_to_save = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
model_path_to_save,
is_main_process=is_main_process,
save_function=save_function,
safe_serialization=safe_serialization,
variant=variant,
)
idx += 1
model_path_to_save = model_path_to_save + f"_{idx}"
@classmethod
def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs):
r"""
Instantiate a pretrained MultiControlNet model from multiple pre-trained controlnet models.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you should first set it back in training mode with `model.train()`.
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_path (`os.PathLike`):
A path to a *directory* containing model weights saved using
[`~diffusers.pipelines.controlnet.MultiControlNetModel.save_pretrained`], e.g.,
`./my_model_directory/controlnet`.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
will be automatically derived from the model's weights.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
same device.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
GPU and the available CPU RAM if unset.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
setting this argument to `True` will raise an error.
variant (`str`, *optional*):
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
ignored when using `from_flax`.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the `safetensors` weights will be downloaded if they're available **and** if the
`safetensors` library is installed. If set to `True`, the model will be forcibly loaded from
`safetensors` weights. If set to `False`, loading will *not* use `safetensors`.
"""
idx = 0
controlnets = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
model_path_to_load = pretrained_model_path
while os.path.isdir(model_path_to_load):
controlnet = ControlNetModel.from_pretrained(model_path_to_load, **kwargs)
controlnets.append(controlnet)
idx += 1
model_path_to_load = pretrained_model_path + f"_{idx}"
logger.info(f"{len(controlnets)} controlnets loaded from {pretrained_model_path}.")
if len(controlnets) == 0:
raise ValueError(
f"No ControlNets found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}."
)
return cls(controlnets)
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
import inspect import inspect
import os
import warnings import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union from typing import Any, Callable, Dict, List, Optional, Tuple, Union
...@@ -560,7 +559,7 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade ...@@ -560,7 +559,7 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade
raise ValueError("A single batch of multiple conditionings are supported at the moment.") raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != len(self.controlnet.nets): elif len(image) != len(self.controlnet.nets):
raise ValueError( raise ValueError(
"For multiple controlnets: `image` must have the same length as the number of controlnets." f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
) )
for image_ in image: for image_ in image:
...@@ -679,18 +678,6 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade ...@@ -679,18 +678,6 @@ class StableDiffusionControlNetPipeline(DiffusionPipeline, TextualInversionLoade
latents = latents * self.scheduler.init_noise_sigma latents = latents * self.scheduler.init_noise_sigma
return latents return latents
# override DiffusionPipeline
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
safe_serialization: bool = False,
variant: Optional[str] = None,
):
if isinstance(self.controlnet, ControlNetModel):
super().save_pretrained(save_directory, safe_serialization, variant)
else:
raise NotImplementedError("Currently, the `save_pretrained()` is not implemented for Multi-ControlNet.")
@torch.no_grad() @torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING) @replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__( def __call__(
......
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
import inspect import inspect
import os
import warnings import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union from typing import Any, Callable, Dict, List, Optional, Tuple, Union
...@@ -586,7 +585,7 @@ class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline, TextualInversi ...@@ -586,7 +585,7 @@ class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline, TextualInversi
raise ValueError("A single batch of multiple conditionings are supported at the moment.") raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != len(self.controlnet.nets): elif len(image) != len(self.controlnet.nets):
raise ValueError( raise ValueError(
"For multiple controlnets: `image` must have the same length as the number of controlnets." f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
) )
for image_ in image: for image_ in image:
...@@ -757,18 +756,6 @@ class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline, TextualInversi ...@@ -757,18 +756,6 @@ class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline, TextualInversi
return latents return latents
# override DiffusionPipeline
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
safe_serialization: bool = False,
variant: Optional[str] = None,
):
if isinstance(self.controlnet, ControlNetModel):
super().save_pretrained(save_directory, safe_serialization, variant)
else:
raise NotImplementedError("Currently, the `save_pretrained()` is not implemented for Multi-ControlNet.")
@torch.no_grad() @torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING) @replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__( def __call__(
......
...@@ -15,7 +15,6 @@ ...@@ -15,7 +15,6 @@
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import inspect import inspect
import os
import warnings import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union from typing import Any, Callable, Dict, List, Optional, Tuple, Union
...@@ -718,7 +717,7 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline, TextualInversi ...@@ -718,7 +717,7 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline, TextualInversi
raise ValueError("A single batch of multiple conditionings are supported at the moment.") raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != len(self.controlnet.nets): elif len(image) != len(self.controlnet.nets):
raise ValueError( raise ValueError(
"For multiple controlnets: `image` must have the same length as the number of controlnets." f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
) )
for image_ in image: for image_ in image:
...@@ -957,18 +956,6 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline, TextualInversi ...@@ -957,18 +956,6 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline, TextualInversi
return image_latents return image_latents
# override DiffusionPipeline
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
safe_serialization: bool = False,
variant: Optional[str] = None,
):
if isinstance(self.controlnet, ControlNetModel):
super().save_pretrained(save_directory, safe_serialization, variant)
else:
raise NotImplementedError("Currently, the `save_pretrained()` is not implemented for Multi-ControlNet.")
@torch.no_grad() @torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING) @replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__( def __call__(
......
...@@ -346,21 +346,6 @@ class StableDiffusionMultiControlNetPipelineFastTests(PipelineTesterMixin, unitt ...@@ -346,21 +346,6 @@ class StableDiffusionMultiControlNetPipelineFastTests(PipelineTesterMixin, unitt
except NotImplementedError: except NotImplementedError:
pass pass
# override PipelineTesterMixin
@unittest.skip("save pretrained not implemented")
def test_save_load_float16(self):
...
# override PipelineTesterMixin
@unittest.skip("save pretrained not implemented")
def test_save_load_local(self):
...
# override PipelineTesterMixin
@unittest.skip("save pretrained not implemented")
def test_save_load_optional_components(self):
...
@slow @slow
@require_torch_gpu @require_torch_gpu
......
...@@ -304,21 +304,6 @@ class StableDiffusionMultiControlNetPipelineFastTests(PipelineTesterMixin, unitt ...@@ -304,21 +304,6 @@ class StableDiffusionMultiControlNetPipelineFastTests(PipelineTesterMixin, unitt
except NotImplementedError: except NotImplementedError:
pass pass
# override PipelineTesterMixin
@unittest.skip("save pretrained not implemented")
def test_save_load_float16(self):
...
# override PipelineTesterMixin
@unittest.skip("save pretrained not implemented")
def test_save_load_local(self):
...
# override PipelineTesterMixin
@unittest.skip("save pretrained not implemented")
def test_save_load_optional_components(self):
...
@slow @slow
@require_torch_gpu @require_torch_gpu
......
...@@ -382,21 +382,6 @@ class MultiControlNetInpaintPipelineFastTests(PipelineTesterMixin, unittest.Test ...@@ -382,21 +382,6 @@ class MultiControlNetInpaintPipelineFastTests(PipelineTesterMixin, unittest.Test
except NotImplementedError: except NotImplementedError:
pass pass
# override PipelineTesterMixin
@unittest.skip("save pretrained not implemented")
def test_save_load_float16(self):
...
# override PipelineTesterMixin
@unittest.skip("save pretrained not implemented")
def test_save_load_local(self):
...
# override PipelineTesterMixin
@unittest.skip("save pretrained not implemented")
def test_save_load_optional_components(self):
...
@slow @slow
@require_torch_gpu @require_torch_gpu
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment