Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
31d1f3c8
Commit
31d1f3c8
authored
Jun 28, 2022
by
Patrick von Platen
Browse files
final fix
parent
635da723
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
30 additions
and
19 deletions
+30
-19
src/diffusers/models/attention2d.py
src/diffusers/models/attention2d.py
+20
-10
src/diffusers/models/unet.py
src/diffusers/models/unet.py
+4
-4
src/diffusers/models/unet_grad_tts.py
src/diffusers/models/unet_grad_tts.py
+1
-1
src/diffusers/models/unet_sde_score_estimation.py
src/diffusers/models/unet_sde_score_estimation.py
+2
-3
tests/test_modeling_utils.py
tests/test_modeling_utils.py
+3
-1
No files found.
src/diffusers/models/attention2d.py
View file @
31d1f3c8
...
@@ -91,11 +91,15 @@ class AttentionBlock(nn.Module):
...
@@ -91,11 +91,15 @@ class AttentionBlock(nn.Module):
self
.
NIN_2
=
NIN
(
channels
,
channels
)
self
.
NIN_2
=
NIN
(
channels
,
channels
)
self
.
NIN_3
=
NIN
(
channels
,
channels
)
self
.
NIN_3
=
NIN
(
channels
,
channels
)
self
.
GroupNorm_0
=
nn
.
GroupNorm
(
num_groups
=
num_groups
,
num_channels
=
channels
,
eps
=
1e-6
)
self
.
is_overwritten
=
False
self
.
is_overwritten
=
False
def
set_weights
(
self
,
module
):
def
set_weights
(
self
,
module
):
if
self
.
overwrite_qkv
:
if
self
.
overwrite_qkv
:
qkv_weight
=
torch
.
cat
([
module
.
q
.
weight
.
data
,
module
.
k
.
weight
.
data
,
module
.
v
.
weight
.
data
],
dim
=
0
)[:,
:,
:,
0
]
qkv_weight
=
torch
.
cat
([
module
.
q
.
weight
.
data
,
module
.
k
.
weight
.
data
,
module
.
v
.
weight
.
data
],
dim
=
0
)[
:,
:,
:,
0
]
qkv_bias
=
torch
.
cat
([
module
.
q
.
bias
.
data
,
module
.
k
.
bias
.
data
,
module
.
v
.
bias
.
data
],
dim
=
0
)
qkv_bias
=
torch
.
cat
([
module
.
q
.
bias
.
data
,
module
.
k
.
bias
.
data
,
module
.
v
.
bias
.
data
],
dim
=
0
)
self
.
qkv
.
weight
.
data
=
qkv_weight
self
.
qkv
.
weight
.
data
=
qkv_weight
...
@@ -107,14 +111,19 @@ class AttentionBlock(nn.Module):
...
@@ -107,14 +111,19 @@ class AttentionBlock(nn.Module):
self
.
proj_out
=
proj_out
self
.
proj_out
=
proj_out
elif
self
.
overwrite_linear
:
elif
self
.
overwrite_linear
:
self
.
qkv
.
weight
.
data
=
torch
.
concat
([
self
.
NIN_0
.
W
.
data
.
T
,
self
.
NIN_1
.
W
.
data
.
T
,
self
.
NIN_2
.
W
.
data
.
T
],
dim
=
0
)[:,
:,
None
]
self
.
qkv
.
weight
.
data
=
torch
.
concat
(
[
self
.
NIN_0
.
W
.
data
.
T
,
self
.
NIN_1
.
W
.
data
.
T
,
self
.
NIN_2
.
W
.
data
.
T
],
dim
=
0
)[:,
:,
None
]
self
.
qkv
.
bias
.
data
=
torch
.
concat
([
self
.
NIN_0
.
b
.
data
,
self
.
NIN_1
.
b
.
data
,
self
.
NIN_2
.
b
.
data
],
dim
=
0
)
self
.
qkv
.
bias
.
data
=
torch
.
concat
([
self
.
NIN_0
.
b
.
data
,
self
.
NIN_1
.
b
.
data
,
self
.
NIN_2
.
b
.
data
],
dim
=
0
)
self
.
proj_out
.
weight
.
data
=
self
.
NIN_3
.
W
.
data
.
T
[:,
:,
None
]
self
.
proj_out
.
weight
.
data
=
self
.
NIN_3
.
W
.
data
.
T
[:,
:,
None
]
self
.
proj_out
.
bias
.
data
=
self
.
NIN_3
.
b
.
data
self
.
proj_out
.
bias
.
data
=
self
.
NIN_3
.
b
.
data
self
.
norm
.
weight
.
data
=
self
.
GroupNorm_0
.
weight
.
data
self
.
norm
.
bias
.
data
=
self
.
GroupNorm_0
.
bias
.
data
def
forward
(
self
,
x
,
encoder_out
=
None
):
def
forward
(
self
,
x
,
encoder_out
=
None
):
if
self
.
overwrite_qkv
and
not
self
.
is_overwritten
:
if
(
self
.
overwrite_qkv
or
self
.
overwrite_linear
)
and
not
self
.
is_overwritten
:
self
.
set_weights
(
self
)
self
.
set_weights
(
self
)
self
.
is_overwritten
=
True
self
.
is_overwritten
=
True
...
@@ -152,7 +161,7 @@ class AttentionBlock(nn.Module):
...
@@ -152,7 +161,7 @@ class AttentionBlock(nn.Module):
# unet_score_estimation.py
# unet_score_estimation.py
#class AttnBlockpp(nn.Module):
#
class AttnBlockpp(nn.Module):
# """Channel-wise self-attention block. Modified from DDPM."""
# """Channel-wise self-attention block. Modified from DDPM."""
#
#
# def __init__(
# def __init__(
...
@@ -187,14 +196,11 @@ class AttentionBlock(nn.Module):
...
@@ -187,14 +196,11 @@ class AttentionBlock(nn.Module):
# self.num_heads = channels // num_head_channels
# self.num_heads = channels // num_head_channels
#
#
# self.use_checkpoint = use_checkpoint
# self.use_checkpoint = use_checkpoint
# self.norm = n
ormalization(
channels, num_groups=num_groups, eps=1e-6
, swish=None
)
# self.norm = n
n.GroupNorm(num_channels=
channels, num_groups=num_groups, eps=1e-6)
# self.qkv =
conv_nd(1,
channels, channels * 3, 1)
# self.qkv =
nn.Conv1d(
channels, channels * 3, 1)
# self.n_heads = self.num_heads
# self.n_heads = self.num_heads
#
#
# if encoder_channels is not None:
# self.proj_out = zero_module(nn.Conv1d(channels, channels, 1))
# self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1)
#
# self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
#
#
# self.is_weight_set = False
# self.is_weight_set = False
#
#
...
@@ -205,6 +211,9 @@ class AttentionBlock(nn.Module):
...
@@ -205,6 +211,9 @@ class AttentionBlock(nn.Module):
# self.proj_out.weight.data = self.NIN_3.W.data.T[:, :, None]
# self.proj_out.weight.data = self.NIN_3.W.data.T[:, :, None]
# self.proj_out.bias.data = self.NIN_3.b.data
# self.proj_out.bias.data = self.NIN_3.b.data
#
#
# self.norm.weight.data = self.GroupNorm_0.weight.data
# self.norm.bias.data = self.GroupNorm_0.bias.data
#
# def forward(self, x):
# def forward(self, x):
# if not self.is_weight_set:
# if not self.is_weight_set:
# self.set_weights()
# self.set_weights()
...
@@ -261,6 +270,7 @@ class AttentionBlock(nn.Module):
...
@@ -261,6 +270,7 @@ class AttentionBlock(nn.Module):
#
#
# return (x + h) / np.sqrt(2.0)
# return (x + h) / np.sqrt(2.0)
# TODO(Patrick) - this can and should be removed
# TODO(Patrick) - this can and should be removed
def
zero_module
(
module
):
def
zero_module
(
module
):
"""
"""
...
...
src/diffusers/models/unet.py
View file @
31d1f3c8
...
@@ -30,9 +30,9 @@ from tqdm import tqdm
...
@@ -30,9 +30,9 @@ from tqdm import tqdm
from
..configuration_utils
import
ConfigMixin
from
..configuration_utils
import
ConfigMixin
from
..modeling_utils
import
ModelMixin
from
..modeling_utils
import
ModelMixin
from
.attention2d
import
AttentionBlock
from
.embeddings
import
get_timestep_embedding
from
.embeddings
import
get_timestep_embedding
from
.resnet
import
Downsample
,
Upsample
from
.resnet
import
Downsample
,
Upsample
from
.attention2d
import
AttentionBlock
def
nonlinearity
(
x
):
def
nonlinearity
(
x
):
...
@@ -219,11 +219,11 @@ class UNetModel(ModelMixin, ConfigMixin):
...
@@ -219,11 +219,11 @@ class UNetModel(ModelMixin, ConfigMixin):
for
i_block
in
range
(
self
.
num_res_blocks
):
for
i_block
in
range
(
self
.
num_res_blocks
):
h
=
self
.
down
[
i_level
].
block
[
i_block
](
hs
[
-
1
],
temb
)
h
=
self
.
down
[
i_level
].
block
[
i_block
](
hs
[
-
1
],
temb
)
if
len
(
self
.
down
[
i_level
].
attn
)
>
0
:
if
len
(
self
.
down
[
i_level
].
attn
)
>
0
:
# self.down[i_level].attn_2[i_block].set_weights(self.down[i_level].attn[i_block])
# self.down[i_level].attn_2[i_block].set_weights(self.down[i_level].attn[i_block])
# h = self.down[i_level].attn_2[i_block](h)
# h = self.down[i_level].attn_2[i_block](h)
h
=
self
.
down
[
i_level
].
attn
[
i_block
](
h
)
h
=
self
.
down
[
i_level
].
attn
[
i_block
](
h
)
# print("Result", (h - h_2).abs().sum())
# print("Result", (h - h_2).abs().sum())
hs
.
append
(
h
)
hs
.
append
(
h
)
if
i_level
!=
self
.
num_resolutions
-
1
:
if
i_level
!=
self
.
num_resolutions
-
1
:
hs
.
append
(
self
.
down
[
i_level
].
downsample
(
hs
[
-
1
]))
hs
.
append
(
self
.
down
[
i_level
].
downsample
(
hs
[
-
1
]))
...
...
src/diffusers/models/unet_grad_tts.py
View file @
31d1f3c8
...
@@ -3,9 +3,9 @@ from numpy import pad
...
@@ -3,9 +3,9 @@ from numpy import pad
from
..configuration_utils
import
ConfigMixin
from
..configuration_utils
import
ConfigMixin
from
..modeling_utils
import
ModelMixin
from
..modeling_utils
import
ModelMixin
from
.attention2d
import
LinearAttention
from
.embeddings
import
get_timestep_embedding
from
.embeddings
import
get_timestep_embedding
from
.resnet
import
Downsample
,
Upsample
from
.resnet
import
Downsample
,
Upsample
from
.attention2d
import
LinearAttention
class
Mish
(
torch
.
nn
.
Module
):
class
Mish
(
torch
.
nn
.
Module
):
...
...
src/diffusers/models/unet_sde_score_estimation.py
View file @
31d1f3c8
...
@@ -16,18 +16,18 @@
...
@@ -16,18 +16,18 @@
# helpers functions
# helpers functions
import
functools
import
functools
import
math
import
string
import
string
import
numpy
as
np
import
numpy
as
np
import
torch
import
torch
import
torch.nn
as
nn
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
torch.nn.functional
as
F
import
math
from
..configuration_utils
import
ConfigMixin
from
..configuration_utils
import
ConfigMixin
from
..modeling_utils
import
ModelMixin
from
..modeling_utils
import
ModelMixin
from
.embeddings
import
GaussianFourierProjection
,
get_timestep_embedding
from
.attention2d
import
AttentionBlock
from
.attention2d
import
AttentionBlock
from
.embeddings
import
GaussianFourierProjection
,
get_timestep_embedding
def
upfirdn2d
(
input
,
kernel
,
up
=
1
,
down
=
1
,
pad
=
(
0
,
0
)):
def
upfirdn2d
(
input
,
kernel
,
up
=
1
,
down
=
1
,
pad
=
(
0
,
0
)):
...
@@ -728,7 +728,6 @@ class NCSNpp(ModelMixin, ConfigMixin):
...
@@ -728,7 +728,6 @@ class NCSNpp(ModelMixin, ConfigMixin):
nn
.
init
.
zeros_
(
modules
[
-
1
].
bias
)
nn
.
init
.
zeros_
(
modules
[
-
1
].
bias
)
AttnBlock
=
functools
.
partial
(
AttentionBlock
,
overwrite_linear
=
True
,
rescale_output_factor
=
math
.
sqrt
(
2.0
))
AttnBlock
=
functools
.
partial
(
AttentionBlock
,
overwrite_linear
=
True
,
rescale_output_factor
=
math
.
sqrt
(
2.0
))
Up_sample
=
functools
.
partial
(
Upsample
,
with_conv
=
resamp_with_conv
,
fir
=
fir
,
fir_kernel
=
fir_kernel
)
Up_sample
=
functools
.
partial
(
Upsample
,
with_conv
=
resamp_with_conv
,
fir
=
fir
,
fir_kernel
=
fir_kernel
)
if
progressive
==
"output_skip"
:
if
progressive
==
"output_skip"
:
...
...
tests/test_modeling_utils.py
View file @
31d1f3c8
...
@@ -859,7 +859,9 @@ class PipelineTesterMixin(unittest.TestCase):
...
@@ -859,7 +859,9 @@ class PipelineTesterMixin(unittest.TestCase):
image_slice
=
image
[
0
,
-
1
,
-
3
:,
-
3
:].
cpu
()
image_slice
=
image
[
0
,
-
1
,
-
3
:,
-
3
:].
cpu
()
assert
image
.
shape
==
(
1
,
3
,
32
,
32
)
assert
image
.
shape
==
(
1
,
3
,
32
,
32
)
expected_slice
=
torch
.
tensor
([
-
0.5712
,
-
0.6215
,
-
0.5953
,
-
0.5438
,
-
0.4775
,
-
0.4539
,
-
0.5172
,
-
0.4872
,
-
0.5105
])
expected_slice
=
torch
.
tensor
(
[
-
0.5712
,
-
0.6215
,
-
0.5953
,
-
0.5438
,
-
0.4775
,
-
0.4539
,
-
0.5172
,
-
0.4872
,
-
0.5105
]
)
assert
(
image_slice
.
flatten
()
-
expected_slice
).
abs
().
max
()
<
1e-2
assert
(
image_slice
.
flatten
()
-
expected_slice
).
abs
().
max
()
<
1e-2
@
slow
@
slow
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment