Commit 302b86bd authored by anton-l's avatar anton-l
Browse files

Adapt training to the new UNet API

parent e795a4c6
## Training examples ## Training examples
### Installing the dependencies
Before running the scipts, make sure to install the library's training dependencies:
```bash
pip install diffusers[training] accelerate datasets
```
### Unconditional Flowers ### Unconditional Flowers
The command to train a DDPM UNet model on the Oxford Flowers dataset: The command to train a DDPM UNet model on the Oxford Flowers dataset:
......
import argparse
import os
import torch
import torch.nn.functional as F
import bitsandbytes as bnb
import PIL.Image
from accelerate import Accelerator
from datasets import load_dataset
from diffusers import DDPMScheduler, Glide, GlideUNetModel
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler
from diffusers.utils import logging
from torchvision.transforms import (
CenterCrop,
Compose,
InterpolationMode,
Normalize,
RandomHorizontalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
logger = logging.get_logger(__name__)
def main(args):
accelerator = Accelerator(mixed_precision=args.mixed_precision)
pipeline = Glide.from_pretrained("fusing/glide-base")
model = pipeline.text_unet
noise_scheduler = DDPMScheduler(timesteps=1000, tensor_format="pt")
optimizer = bnb.optim.Adam8bit(model.parameters(), lr=args.lr)
augmentations = Compose(
[
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
CenterCrop(args.resolution),
RandomHorizontalFlip(),
ToTensor(),
Normalize([0.5], [0.5]),
]
)
dataset = load_dataset(args.dataset, split="train")
text_encoder = pipeline.text_encoder.eval()
def transforms(examples):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
text_inputs = pipeline.tokenizer(examples["caption"], padding="max_length", max_length=77, return_tensors="pt")
text_inputs = text_inputs.input_ids.to(accelerator.device)
with torch.no_grad():
text_embeddings = accelerator.unwrap_model(text_encoder)(text_inputs).last_hidden_state
return {"images": images, "text_embeddings": text_embeddings}
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
)
model, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, text_encoder, optimizer, train_dataloader, lr_scheduler
)
if args.push_to_hub:
repo = init_git_repo(args, at_init=True)
# Train!
is_distributed = torch.distributed.is_available() and torch.distributed.is_initialized()
world_size = torch.distributed.get_world_size() if is_distributed else 1
total_train_batch_size = args.batch_size * args.gradient_accumulation_steps * world_size
max_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_epochs
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataloader.dataset)}")
logger.info(f" Num Epochs = {args.num_epochs}")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_steps}")
for epoch in range(args.num_epochs):
model.train()
with tqdm(total=len(train_dataloader), unit="ba") as pbar:
pbar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["images"]
batch_size, n_channels, height, width = clean_images.shape
noise_samples = torch.randn(clean_images.shape).to(clean_images.device)
timesteps = torch.randint(
0, noise_scheduler.timesteps, (batch_size,), device=clean_images.device
).long()
# add noise onto the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.training_step(clean_images, noise_samples, timesteps)
if step % args.gradient_accumulation_steps != 0:
with accelerator.no_sync(model):
model_output = model(noisy_images, timesteps, batch["text_embeddings"])
model_output, model_var_values = torch.split(model_output, n_channels, dim=1)
# Learn the variance using the variational bound, but don't let
# it affect our mean prediction.
frozen_out = torch.cat([model_output.detach(), model_var_values], dim=1)
# predict the noise residual
loss = F.mse_loss(model_output, noise_samples)
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
optimizer.step()
else:
model_output = model(noisy_images, timesteps, batch["text_embeddings"])
model_output, model_var_values = torch.split(model_output, n_channels, dim=1)
# Learn the variance using the variational bound, but don't let
# it affect our mean prediction.
frozen_out = torch.cat([model_output.detach(), model_var_values], dim=1)
# predict the noise residual
loss = F.mse_loss(model_output, noise_samples)
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
pbar.update(1)
pbar.set_postfix(loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"])
accelerator.wait_for_everyone()
# Generate a sample image for visual inspection
if accelerator.is_main_process:
model.eval()
with torch.no_grad():
pipeline.unet = accelerator.unwrap_model(model)
generator = torch.manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
image = pipeline("a clip art of a corgi", generator=generator, num_upscale_inference_steps=50)
# process image to PIL
image_processed = image.squeeze(0)
image_processed = ((image_processed + 1) * 127.5).round().clamp(0, 255).to(torch.uint8).cpu().numpy()
image_pil = PIL.Image.fromarray(image_processed)
# save image
test_dir = os.path.join(args.output_dir, "test_samples")
os.makedirs(test_dir, exist_ok=True)
image_pil.save(f"{test_dir}/{epoch:04d}.png")
# save the model
if args.push_to_hub:
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
else:
pipeline.save_pretrained(args.output_dir)
accelerator.wait_for_everyone()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--dataset", type=str, default="fusing/dog_captions")
parser.add_argument("--output_dir", type=str, default="glide-text2image")
parser.add_argument("--overwrite_output_dir", action="store_true")
parser.add_argument("--resolution", type=int, default=64)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--gradient_accumulation_steps", type=int, default=4)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--warmup_steps", type=int, default=500)
parser.add_argument("--push_to_hub", action="store_true")
parser.add_argument("--hub_token", type=str, default=None)
parser.add_argument("--hub_model_id", type=str, default=None)
parser.add_argument("--hub_private_repo", action="store_true")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
main(args)
import argparse
import os
import torch
import torch.nn.functional as F
import bitsandbytes as bnb
import PIL.Image
from accelerate import Accelerator
from datasets import load_dataset
from diffusers import DDPMScheduler, LatentDiffusion, UNetLDMModel
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler
from diffusers.utils import logging
from torchvision.transforms import (
CenterCrop,
Compose,
InterpolationMode,
Normalize,
RandomHorizontalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
logger = logging.get_logger(__name__)
def main(args):
accelerator = Accelerator(mixed_precision=args.mixed_precision)
pipeline = LatentDiffusion.from_pretrained("fusing/latent-diffusion-text2im-large")
pipeline.unet = None # this model will be trained from scratch now
model = UNetLDMModel(
attention_resolutions=[4, 2, 1],
channel_mult=[1, 2, 4, 4],
context_dim=1280,
conv_resample=True,
dims=2,
dropout=0,
image_size=8,
in_channels=4,
model_channels=320,
num_heads=8,
num_res_blocks=2,
out_channels=4,
resblock_updown=False,
transformer_depth=1,
use_new_attention_order=False,
use_scale_shift_norm=False,
use_spatial_transformer=True,
legacy=False,
)
noise_scheduler = DDPMScheduler(timesteps=1000, tensor_format="pt")
optimizer = bnb.optim.Adam8bit(model.parameters(), lr=args.lr)
augmentations = Compose(
[
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
CenterCrop(args.resolution),
RandomHorizontalFlip(),
ToTensor(),
Normalize([0.5], [0.5]),
]
)
dataset = load_dataset(args.dataset, split="train")
text_encoder = pipeline.bert.eval()
vqvae = pipeline.vqvae.eval()
def transforms(examples):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
text_inputs = pipeline.tokenizer(examples["caption"], padding="max_length", max_length=77, return_tensors="pt")
with torch.no_grad():
text_embeddings = accelerator.unwrap_model(text_encoder)(text_inputs.input_ids.cpu()).last_hidden_state
images = 1 / 0.18215 * torch.stack(images, dim=0)
latents = accelerator.unwrap_model(vqvae).encode(images.cpu()).mode()
return {"images": images, "text_embeddings": text_embeddings, "latents": latents}
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
)
model, text_encoder, vqvae, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, text_encoder, vqvae, optimizer, train_dataloader, lr_scheduler
)
text_encoder = text_encoder.cpu()
vqvae = vqvae.cpu()
if args.push_to_hub:
repo = init_git_repo(args, at_init=True)
# Train!
is_distributed = torch.distributed.is_available() and torch.distributed.is_initialized()
world_size = torch.distributed.get_world_size() if is_distributed else 1
total_train_batch_size = args.batch_size * args.gradient_accumulation_steps * world_size
max_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_epochs
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataloader.dataset)}")
logger.info(f" Num Epochs = {args.num_epochs}")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_steps}")
global_step = 0
for epoch in range(args.num_epochs):
model.train()
with tqdm(total=len(train_dataloader), unit="ba") as pbar:
pbar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_latents = batch["latents"]
noise_samples = torch.randn(clean_latents.shape).to(clean_latents.device)
bsz = clean_latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_latents.device).long()
# add noise onto the clean latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.training_step(clean_latents, noise_samples, timesteps)
if step % args.gradient_accumulation_steps != 0:
with accelerator.no_sync(model):
output = model(noisy_latents, timesteps, context=batch["text_embeddings"])
# predict the noise residual
loss = F.mse_loss(output, noise_samples)
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
optimizer.step()
else:
output = model(noisy_latents, timesteps, context=batch["text_embeddings"])
# predict the noise residual
loss = F.mse_loss(output, noise_samples)
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
pbar.update(1)
pbar.set_postfix(loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"])
global_step += 1
accelerator.wait_for_everyone()
# Generate a sample image for visual inspection
if accelerator.is_main_process:
model.eval()
with torch.no_grad():
pipeline.unet = accelerator.unwrap_model(model)
generator = torch.manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
image = pipeline(
["a clip art of a corgi"], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50
)
# process image to PIL
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = image_processed * 255.0
image_processed = image_processed.type(torch.uint8).numpy()
image_pil = PIL.Image.fromarray(image_processed[0])
# save image
test_dir = os.path.join(args.output_dir, "test_samples")
os.makedirs(test_dir, exist_ok=True)
image_pil.save(f"{test_dir}/{epoch:04d}.png")
# save the model
if args.push_to_hub:
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
else:
pipeline.save_pretrained(args.output_dir)
accelerator.wait_for_everyone()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--dataset", type=str, default="fusing/dog_captions")
parser.add_argument("--output_dir", type=str, default="ldm-text2image")
parser.add_argument("--overwrite_output_dir", action="store_true")
parser.add_argument("--resolution", type=int, default=128)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--gradient_accumulation_steps", type=int, default=16)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--warmup_steps", type=int, default=500)
parser.add_argument("--push_to_hub", action="store_true")
parser.add_argument("--hub_token", type=str, default=None)
parser.add_argument("--hub_model_id", type=str, default=None)
parser.add_argument("--hub_private_repo", action="store_true")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
main(args)
...@@ -7,7 +7,7 @@ import torch.nn.functional as F ...@@ -7,7 +7,7 @@ import torch.nn.functional as F
from accelerate import Accelerator from accelerate import Accelerator
from accelerate.logging import get_logger from accelerate.logging import get_logger
from datasets import load_dataset from datasets import load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNetUnconditionalModel from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.hub_utils import init_git_repo, push_to_hub from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel from diffusers.training_utils import EMAModel
...@@ -34,27 +34,27 @@ def main(args): ...@@ -34,27 +34,27 @@ def main(args):
logging_dir=logging_dir, logging_dir=logging_dir,
) )
model = UNetUnconditionalModel( model = UNet2DModel(
image_size=args.resolution, sample_size=args.resolution,
in_channels=3, in_channels=3,
out_channels=3, out_channels=3,
num_res_blocks=2, layers_per_block=2,
block_channels=(128, 128, 256, 256, 512, 512), block_out_channels=(128, 128, 256, 256, 512, 512),
down_blocks=( down_block_types=(
"UNetResDownBlock2D", "DownBlock2D",
"UNetResDownBlock2D", "DownBlock2D",
"UNetResDownBlock2D", "DownBlock2D",
"UNetResDownBlock2D", "DownBlock2D",
"UNetResAttnDownBlock2D", "AttnDownBlock2D",
"UNetResDownBlock2D", "DownBlock2D",
), ),
up_blocks=( up_block_types=(
"UNetResUpBlock2D", "UpBlock2D",
"UNetResAttnUpBlock2D", "AttnUpBlock2D",
"UNetResUpBlock2D", "UpBlock2D",
"UNetResUpBlock2D", "UpBlock2D",
"UNetResUpBlock2D", "UpBlock2D",
"UNetResUpBlock2D", "UpBlock2D",
), ),
) )
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt") noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt")
...@@ -157,13 +157,11 @@ def main(args): ...@@ -157,13 +157,11 @@ def main(args):
generator = torch.manual_seed(0) generator = torch.manual_seed(0)
# run pipeline in inference (sample random noise and denoise) # run pipeline in inference (sample random noise and denoise)
images = pipeline(generator=generator, batch_size=args.eval_batch_size) images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy")["sample"]
# denormalize the images and save to tensorboard # denormalize the images and save to tensorboard
images_processed = (images.cpu() + 1.0) * 127.5 images_processed = (images * 255).round().astype("uint8")
images_processed = images_processed.clamp(0, 255).type(torch.uint8).numpy() accelerator.trackers[0].writer.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch)
accelerator.trackers[0].writer.add_images("test_samples", images_processed, epoch)
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
# save the model # save the model
......
...@@ -21,14 +21,13 @@ from typing import Optional ...@@ -21,14 +21,13 @@ from typing import Optional
from diffusers import DiffusionPipeline from diffusers import DiffusionPipeline
from huggingface_hub import HfFolder, Repository, whoami from huggingface_hub import HfFolder, Repository, whoami
from utils import is_modelcards_available
from .utils import is_modelcards_available, logging
if is_modelcards_available(): if is_modelcards_available():
from modelcards import CardData, ModelCard from modelcards import CardData, ModelCard
from .utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment