Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
3028089e
Unverified
Commit
3028089e
authored
Mar 21, 2024
by
M. Tolga Cangöz
Committed by
GitHub
Mar 20, 2024
Browse files
Fix typos (#7411)
* Fix typos * Fix typo in SVD.md
parent
b536f398
Changes
26
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
26 additions
and
26 deletions
+26
-26
docs/source/en/using-diffusers/svd.md
docs/source/en/using-diffusers/svd.md
+2
-2
examples/community/unclip_text_interpolation.py
examples/community/unclip_text_interpolation.py
+1
-1
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py
...fusers/pipelines/kandinsky/pipeline_kandinsky_combined.py
+3
-3
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
...diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
+1
-1
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py
.../pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py
+3
-3
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py
...ers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py
+1
-1
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py
...lines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py
+1
-1
src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
...s/stable_diffusion/pipeline_stable_diffusion_depth2img.py
+2
-2
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
...e_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
...sers/pipelines/stable_diffusion/pipeline_stable_unclip.py
+1
-1
src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
...usion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
+1
-1
src/diffusers/schedulers/scheduling_consistency_models.py
src/diffusers/schedulers/scheduling_consistency_models.py
+1
-1
src/diffusers/schedulers/scheduling_deis_multistep.py
src/diffusers/schedulers/scheduling_deis_multistep.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
+1
-1
src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
...iffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
+1
-1
src/diffusers/schedulers/scheduling_edm_euler.py
src/diffusers/schedulers/scheduling_edm_euler.py
+1
-1
src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
...ffusers/schedulers/scheduling_euler_ancestral_discrete.py
+1
-1
No files found.
docs/source/en/using-diffusers/svd.md
View file @
3028089e
...
...
@@ -86,7 +86,7 @@ Video generation is very memory intensive because you're essentially generating
+ frames = pipe(image, decode_chunk_size=2, generator=generator, num_frames=25).frames[0]
```
Using all these tricks together
e
should lower the memory requirement to less than 8GB VRAM.
Using all these tricks together should lower the memory requirement to less than 8GB VRAM.
## Micro-conditioning
...
...
examples/community/unclip_text_interpolation.py
View file @
3028089e
...
...
@@ -48,7 +48,7 @@ class UnCLIPTextInterpolationPipeline(DiffusionPipeline):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
text_proj ([`UnCLIPTextProjModel`]):
Utility class to prepare and combine the embeddings before they are passed to the decoder.
decoder ([`UNet2DConditionModel`]):
...
...
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py
View file @
3028089e
...
...
@@ -129,7 +129,7 @@ class KandinskyCombinedPipeline(DiffusionPipeline):
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
...
...
@@ -346,7 +346,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
...
...
@@ -586,7 +586,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
...
...
src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
View file @
3028089e
...
...
@@ -134,7 +134,7 @@ class KandinskyPriorPipeline(DiffusionPipeline):
Args:
prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
text_encoder ([`CLIPTextModelWithProjection`]):
...
...
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py
View file @
3028089e
...
...
@@ -119,7 +119,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
...
...
@@ -346,7 +346,7 @@ class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline):
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
...
...
@@ -594,7 +594,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
prior_prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
prior_image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
...
...
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py
View file @
3028089e
...
...
@@ -90,7 +90,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
Args:
prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
text_encoder ([`CLIPTextModelWithProjection`]):
...
...
src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py
View file @
3028089e
...
...
@@ -108,7 +108,7 @@ class KandinskyV22PriorEmb2EmbPipeline(DiffusionPipeline):
Args:
prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
text_encoder ([`CLIPTextModelWithProjection`]):
...
...
src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
View file @
3028089e
...
...
@@ -86,7 +86,7 @@ class ShapEImg2ImgPipeline(DiffusionPipeline):
Args:
prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
image_encoder ([`~transformers.CLIPVisionModel`]):
Frozen image-encoder.
image_processor ([`~transformers.CLIPImageProcessor`]):
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
View file @
3028089e
...
...
@@ -700,8 +700,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> init_image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "two tigers"
>>> n_pro
p
mt = "bad, deformed, ugly, bad anotomy"
>>> image = pipe(prompt=prompt, image=init_image, negative_prompt=n_pro
p
mt, strength=0.7).images[0]
>>> n_prom
p
t = "bad, deformed, ugly, bad anotomy"
>>> image = pipe(prompt=prompt, image=init_image, negative_prompt=n_prom
p
t, strength=0.7).images[0]
```
Returns:
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
View file @
3028089e
...
...
@@ -194,7 +194,7 @@ class StableDiffusionInstructPix2PixPipeline(
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
image_guidance_scale (`float`, *optional*, defaults to 1.5):
Push the generated image towards the inital `image`. Image guidance scale is enabled by setting
Push the generated image towards the init
i
al `image`. Image guidance scale is enabled by setting
`image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely
linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a
value of at least `1`.
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
View file @
3028089e
...
...
@@ -76,7 +76,7 @@ class StableUnCLIPPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInver
prior_text_encoder ([`CLIPTextModelWithProjection`]):
Frozen [`CLIPTextModelWithProjection`] text-encoder.
prior ([`PriorTransformer`]):
The canoni
n
cal unCLIP prior to approximate the image embedding from the text embedding.
The canonical unCLIP prior to approximate the image embedding from the text embedding.
prior_scheduler ([`KarrasDiffusionSchedulers`]):
Scheduler used in the prior denoising process.
image_normalizer ([`StableUnCLIPImageNormalizer`]):
...
...
src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
View file @
3028089e
...
...
@@ -659,7 +659,7 @@ class StableDiffusionXLInstructPix2PixPipeline(
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
image_guidance_scale (`float`, *optional*, defaults to 1.5):
Image guidance scale is to push the generated image towards the inital image `image`. Image guidance
Image guidance scale is to push the generated image towards the init
i
al image `image`. Image guidance
scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to
generate images that are closely linked to the source image `image`, usually at the expense of lower
image quality. This pipeline requires a value of at least `1`.
...
...
src/diffusers/schedulers/scheduling_consistency_models.py
View file @
3028089e
...
...
@@ -438,7 +438,7 @@ class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
# add_noise is called after first denoising step (for inpainting)
step_indices
=
[
self
.
step_index
]
*
timesteps
.
shape
[
0
]
else
:
# add noise is called be
v
ore first denoising step to create inital latent(img2img)
# add noise is called be
f
ore first denoising step to create init
i
al latent(img2img)
step_indices
=
[
self
.
begin_index
]
*
timesteps
.
shape
[
0
]
sigma
=
sigmas
[
step_indices
].
flatten
()
...
...
src/diffusers/schedulers/scheduling_deis_multistep.py
View file @
3028089e
...
...
@@ -775,7 +775,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
# add_noise is called after first denoising step (for inpainting)
step_indices
=
[
self
.
step_index
]
*
timesteps
.
shape
[
0
]
else
:
# add noise is called be
v
ore first denoising step to create inital latent(img2img)
# add noise is called be
f
ore first denoising step to create init
i
al latent(img2img)
step_indices
=
[
self
.
begin_index
]
*
timesteps
.
shape
[
0
]
sigma
=
sigmas
[
step_indices
].
flatten
()
...
...
src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
View file @
3028089e
...
...
@@ -1018,7 +1018,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
# add_noise is called after first denoising step (for inpainting)
step_indices
=
[
self
.
step_index
]
*
timesteps
.
shape
[
0
]
else
:
# add noise is called be
v
ore first denoising step to create inital latent(img2img)
# add noise is called be
f
ore first denoising step to create init
i
al latent(img2img)
step_indices
=
[
self
.
begin_index
]
*
timesteps
.
shape
[
0
]
sigma
=
sigmas
[
step_indices
].
flatten
()
...
...
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
View file @
3028089e
...
...
@@ -547,7 +547,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
# add_noise is called after first denoising step (for inpainting)
step_indices
=
[
self
.
step_index
]
*
timesteps
.
shape
[
0
]
else
:
# add noise is called be
v
ore first denoising step to create inital latent(img2img)
# add noise is called be
f
ore first denoising step to create init
i
al latent(img2img)
step_indices
=
[
self
.
begin_index
]
*
timesteps
.
shape
[
0
]
sigma
=
sigmas
[
step_indices
].
flatten
()
...
...
src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
View file @
3028089e
...
...
@@ -968,7 +968,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
# add_noise is called after first denoising step (for inpainting)
step_indices
=
[
self
.
step_index
]
*
timesteps
.
shape
[
0
]
else
:
# add noise is called be
v
ore first denoising step to create inital latent(img2img)
# add noise is called be
f
ore first denoising step to create init
i
al latent(img2img)
step_indices
=
[
self
.
begin_index
]
*
timesteps
.
shape
[
0
]
sigma
=
sigmas
[
step_indices
].
flatten
()
...
...
src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
View file @
3028089e
...
...
@@ -673,7 +673,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
# add_noise is called after first denoising step (for inpainting)
step_indices
=
[
self
.
step_index
]
*
timesteps
.
shape
[
0
]
else
:
# add noise is called be
v
ore first denoising step to create inital latent(img2img)
# add noise is called be
f
ore first denoising step to create init
i
al latent(img2img)
step_indices
=
[
self
.
begin_index
]
*
timesteps
.
shape
[
0
]
sigma
=
sigmas
[
step_indices
].
flatten
()
...
...
src/diffusers/schedulers/scheduling_edm_euler.py
View file @
3028089e
...
...
@@ -371,7 +371,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
# add_noise is called after first denoising step (for inpainting)
step_indices
=
[
self
.
step_index
]
*
timesteps
.
shape
[
0
]
else
:
# add noise is called be
v
ore first denoising step to create inital latent(img2img)
# add noise is called be
f
ore first denoising step to create init
i
al latent(img2img)
step_indices
=
[
self
.
begin_index
]
*
timesteps
.
shape
[
0
]
sigma
=
sigmas
[
step_indices
].
flatten
()
...
...
src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
View file @
3028089e
...
...
@@ -471,7 +471,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
# add_noise is called after first denoising step (for inpainting)
step_indices
=
[
self
.
step_index
]
*
timesteps
.
shape
[
0
]
else
:
# add noise is called be
v
ore first denoising step to create inital latent(img2img)
# add noise is called be
f
ore first denoising step to create init
i
al latent(img2img)
step_indices
=
[
self
.
begin_index
]
*
timesteps
.
shape
[
0
]
sigma
=
sigmas
[
step_indices
].
flatten
()
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment