Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
2fcae69f
Unverified
Commit
2fcae69f
authored
Nov 04, 2022
by
Anton Lozhkov
Committed by
GitHub
Nov 04, 2022
Browse files
Bump to 0.8.0.dev0 (#1131)
* Bump to 0.8.0.dev0 * deprecate int timesteps * style
parent
a4802294
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
9 additions
and
60 deletions
+9
-60
setup.py
setup.py
+1
-1
src/diffusers/__init__.py
src/diffusers/__init__.py
+1
-1
src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
...ffusers/schedulers/scheduling_euler_ancestral_discrete.py
+2
-14
src/diffusers/schedulers/scheduling_euler_discrete.py
src/diffusers/schedulers/scheduling_euler_discrete.py
+2
-14
src/diffusers/schedulers/scheduling_lms_discrete.py
src/diffusers/schedulers/scheduling_lms_discrete.py
+3
-30
No files found.
setup.py
View file @
2fcae69f
...
...
@@ -210,7 +210,7 @@ install_requires = [
setup
(
name
=
"diffusers"
,
version
=
"0.
7.
0"
,
# expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
version
=
"0.
8.0.dev
0"
,
# expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description
=
"Diffusers"
,
long_description
=
open
(
"README.md"
,
"r"
,
encoding
=
"utf-8"
).
read
(),
long_description_content_type
=
"text/markdown"
,
...
...
src/diffusers/__init__.py
View file @
2fcae69f
...
...
@@ -9,7 +9,7 @@ from .utils import (
)
__version__
=
"0.
7.
0"
__version__
=
"0.
8.0.dev
0"
from
.configuration_utils
import
ConfigMixin
from
.onnx_utils
import
OnnxRuntimeModel
...
...
src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
View file @
2fcae69f
...
...
@@ -19,7 +19,7 @@ import numpy as np
import
torch
from
..configuration_utils
import
ConfigMixin
,
register_to_config
from
..utils
import
BaseOutput
,
deprecate
,
logging
from
..utils
import
BaseOutput
,
logging
from
.scheduling_utils
import
SchedulerMixin
...
...
@@ -253,19 +253,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
timesteps
=
timesteps
.
to
(
original_samples
.
device
)
schedule_timesteps
=
self
.
timesteps
if
isinstance
(
timesteps
,
torch
.
IntTensor
)
or
isinstance
(
timesteps
,
torch
.
LongTensor
):
deprecate
(
"timesteps as indices"
,
"0.8.0"
,
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerAncestralDiscreteScheduler.add_noise()` will not be supported in future versions. Make sure to"
" pass values from `scheduler.timesteps` as timesteps."
,
standard_warn
=
False
,
)
step_indices
=
timesteps
else
:
step_indices
=
[(
schedule_timesteps
==
t
).
nonzero
().
item
()
for
t
in
timesteps
]
step_indices
=
[(
schedule_timesteps
==
t
).
nonzero
().
item
()
for
t
in
timesteps
]
sigma
=
self
.
sigmas
[
step_indices
].
flatten
()
while
len
(
sigma
.
shape
)
<
len
(
original_samples
.
shape
):
...
...
src/diffusers/schedulers/scheduling_euler_discrete.py
View file @
2fcae69f
...
...
@@ -19,7 +19,7 @@ import numpy as np
import
torch
from
..configuration_utils
import
ConfigMixin
,
register_to_config
from
..utils
import
BaseOutput
,
deprecate
,
logging
from
..utils
import
BaseOutput
,
logging
from
.scheduling_utils
import
SchedulerMixin
...
...
@@ -262,19 +262,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
timesteps
=
timesteps
.
to
(
original_samples
.
device
)
schedule_timesteps
=
self
.
timesteps
if
isinstance
(
timesteps
,
torch
.
IntTensor
)
or
isinstance
(
timesteps
,
torch
.
LongTensor
):
deprecate
(
"timesteps as indices"
,
"0.8.0"
,
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.add_noise()` will not be supported in future versions. Make sure to"
" pass values from `scheduler.timesteps` as timesteps."
,
standard_warn
=
False
,
)
step_indices
=
timesteps
else
:
step_indices
=
[(
schedule_timesteps
==
t
).
nonzero
().
item
()
for
t
in
timesteps
]
step_indices
=
[(
schedule_timesteps
==
t
).
nonzero
().
item
()
for
t
in
timesteps
]
sigma
=
self
.
sigmas
[
step_indices
].
flatten
()
while
len
(
sigma
.
shape
)
<
len
(
original_samples
.
shape
):
...
...
src/diffusers/schedulers/scheduling_lms_discrete.py
View file @
2fcae69f
...
...
@@ -21,7 +21,7 @@ import torch
from
scipy
import
integrate
from
..configuration_utils
import
ConfigMixin
,
register_to_config
from
..utils
import
BaseOutput
,
deprecate
from
..utils
import
BaseOutput
from
.scheduling_utils
import
SchedulerMixin
...
...
@@ -211,22 +211,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
if
isinstance
(
timestep
,
torch
.
Tensor
):
timestep
=
timestep
.
to
(
self
.
timesteps
.
device
)
if
(
isinstance
(
timestep
,
int
)
or
isinstance
(
timestep
,
torch
.
IntTensor
)
or
isinstance
(
timestep
,
torch
.
LongTensor
)
):
deprecate
(
"timestep as an index"
,
"0.8.0"
,
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `LMSDiscreteScheduler.step()` will not be supported in future versions. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
,
standard_warn
=
False
,
)
step_index
=
timestep
else
:
step_index
=
(
self
.
timesteps
==
timestep
).
nonzero
().
item
()
step_index
=
(
self
.
timesteps
==
timestep
).
nonzero
().
item
()
sigma
=
self
.
sigmas
[
step_index
]
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
...
...
@@ -269,19 +254,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
timesteps
=
timesteps
.
to
(
original_samples
.
device
)
schedule_timesteps
=
self
.
timesteps
if
isinstance
(
timesteps
,
torch
.
IntTensor
)
or
isinstance
(
timesteps
,
torch
.
LongTensor
):
deprecate
(
"timesteps as indices"
,
"0.8.0"
,
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `LMSDiscreteScheduler.add_noise()` will not be supported in future versions. Make sure to"
" pass values from `scheduler.timesteps` as timesteps."
,
standard_warn
=
False
,
)
step_indices
=
timesteps
else
:
step_indices
=
[(
schedule_timesteps
==
t
).
nonzero
().
item
()
for
t
in
timesteps
]
step_indices
=
[(
schedule_timesteps
==
t
).
nonzero
().
item
()
for
t
in
timesteps
]
sigma
=
self
.
sigmas
[
step_indices
].
flatten
()
while
len
(
sigma
.
shape
)
<
len
(
original_samples
.
shape
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment