Commit 2b31740d authored by Patrick von Platen's avatar Patrick von Platen
Browse files
parents 63b34191 3bec90ff
...@@ -34,6 +34,21 @@ class OnnxStableDiffusionInpaintPipeline(metaclass=DummyObject): ...@@ -34,6 +34,21 @@ class OnnxStableDiffusionInpaintPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers", "onnx"]) requires_backends(cls, ["torch", "transformers", "onnx"])
class OnnxStableDiffusionInpaintPipelineLegacy(metaclass=DummyObject):
_backends = ["torch", "transformers", "onnx"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "onnx"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
class OnnxStableDiffusionPipeline(metaclass=DummyObject): class OnnxStableDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers", "onnx"] _backends = ["torch", "transformers", "onnx"]
......
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
require_onnxruntime,
require_torch_gpu,
slow,
)
if is_onnx_available():
import onnxruntime as ort
@slow
@require_onnxruntime
@require_torch_gpu
class StableDiffusionOnnxInpaintLegacyPipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy"
)
# using the PNDM scheduler by default
pipe = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A red cat sitting on a park bench"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
init_image=init_image,
mask_image=mask_image,
strength=0.75,
guidance_scale=7.5,
num_inference_steps=15,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-2
...@@ -22,13 +22,17 @@ import torch ...@@ -22,13 +22,17 @@ import torch
from diffusers import ( from diffusers import (
AutoencoderKL, AutoencoderKL,
LMSDiscreteScheduler,
PNDMScheduler, PNDMScheduler,
StableDiffusionInpaintPipeline, StableDiffusionInpaintPipeline,
UNet2DConditionModel, UNet2DConditionModel,
UNet2DModel, UNet2DModel,
VQModel, VQModel,
) )
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
from diffusers.utils.testing_utils import require_torch_gpu from diffusers.utils.testing_utils import require_torch_gpu
from PIL import Image from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
...@@ -421,6 +425,45 @@ class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): ...@@ -421,6 +425,45 @@ class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
assert image.shape == (512, 512, 3) assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-2 assert np.abs(expected_image - image).max() < 1e-2
def test_stable_diffusion_inpaint_pipeline_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/yellow_cat_sitting_on_a_park_bench_k_lms.npy"
)
model_id = "runwayml/stable-diffusion-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
# switch to LMS
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-2
@unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU") @unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache() torch.cuda.empty_cache()
...@@ -466,3 +509,171 @@ class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): ...@@ -466,3 +509,171 @@ class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
mem_bytes = torch.cuda.max_memory_allocated() mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated # make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9 assert mem_bytes < 2.2 * 10**9
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
def test_pil_inputs(self):
im = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
im = Image.fromarray(im)
mask = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
mask = Image.fromarray((mask * 255).astype(np.uint8))
t_mask, t_masked = prepare_mask_and_masked_image(im, mask)
self.assertTrue(isinstance(t_mask, torch.Tensor))
self.assertTrue(isinstance(t_masked, torch.Tensor))
self.assertEqual(t_mask.ndim, 4)
self.assertEqual(t_masked.ndim, 4)
self.assertEqual(t_mask.shape, (1, 1, 32, 32))
self.assertEqual(t_masked.shape, (1, 3, 32, 32))
self.assertTrue(t_mask.dtype == torch.float32)
self.assertTrue(t_masked.dtype == torch.float32)
self.assertTrue(t_mask.min() >= 0.0)
self.assertTrue(t_mask.max() <= 1.0)
self.assertTrue(t_masked.min() >= -1.0)
self.assertTrue(t_masked.min() <= 1.0)
self.assertTrue(t_mask.sum() > 0.0)
def test_np_inputs(self):
im_np = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
im_pil = Image.fromarray(im_np)
mask_np = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
t_mask_pil, t_masked_pil = prepare_mask_and_masked_image(im_pil, mask_pil)
self.assertTrue((t_mask_np == t_mask_pil).all())
self.assertTrue((t_masked_np == t_masked_pil).all())
def test_torch_3D_2D_inputs(self):
im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy().transpose(1, 2, 0)
mask_np = mask_tensor.numpy()
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_3D_3D_inputs(self):
im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy().transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_4D_2D_inputs(self):
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_4D_3D_inputs(self):
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_4D_4D_inputs(self):
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (1, 1, 32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0][0]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_batch_4D_3D(self):
im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (2, 32, 32), dtype=torch.uint8) > 127.5
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
mask_nps = [mask.numpy() for mask in mask_tensor]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
t_mask_np = torch.cat([n[0] for n in nps])
t_masked_np = torch.cat([n[1] for n in nps])
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_batch_4D_4D(self):
im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (2, 1, 32, 32), dtype=torch.uint8) > 127.5
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
mask_nps = [mask.numpy()[0] for mask in mask_tensor]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
t_mask_np = torch.cat([n[0] for n in nps])
t_masked_np = torch.cat([n[1] for n in nps])
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_shape_mismatch(self):
# test height and width
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.randn(3, 32, 32), torch.randn(64, 64))
# test batch dim
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 64, 64))
# test batch dim
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 1, 64, 64))
def test_type_mismatch(self):
# test tensors-only
with self.assertRaises(TypeError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.rand(3, 32, 32).numpy())
# test tensors-only
with self.assertRaises(TypeError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32).numpy(), torch.rand(3, 32, 32))
def test_channels_first(self):
# test channels first for 3D tensors
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.rand(32, 32, 3), torch.rand(3, 32, 32))
def test_tensor_range(self):
# test im <= 1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.ones(3, 32, 32) * 2, torch.rand(32, 32))
# test im >= -1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.ones(3, 32, 32) * (-2), torch.rand(32, 32))
# test mask <= 1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * 2)
# test mask >= 0
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * -1)
\ No newline at end of file
...@@ -153,6 +153,10 @@ def is_copy_consistent(filename, overwrite=False): ...@@ -153,6 +153,10 @@ def is_copy_consistent(filename, overwrite=False):
observed_code_lines = lines[start_index:line_index] observed_code_lines = lines[start_index:line_index]
observed_code = "".join(observed_code_lines) observed_code = "".join(observed_code_lines)
# Remove any nested `Copied from` comments to avoid circular copies
theoretical_code = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(line) is None]
theoretical_code = "\n".join(theoretical_code)
# Before comparing, use the `replace_pattern` on the original code. # Before comparing, use the `replace_pattern` on the original code.
if len(replace_pattern) > 0: if len(replace_pattern) > 0:
patterns = replace_pattern.replace("with", "").split(",") patterns = replace_pattern.replace("with", "").split(",")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment