Unverified Commit 2541d141 authored by Linoy Tsaban's avatar Linoy Tsaban Committed by GitHub
Browse files

[advanced flux lora script] minor updates to readme (#9705)

* fix arg naming

* fix arg naming

* fix arg naming

* fix arg naming
parent 5704376d
......@@ -96,7 +96,7 @@ Please keep the following points in mind:
To activate pivotal tuning for both encoders, add the flag `--enable_t5_ti`.
* When not fine-tuning the text encoders, we ALWAYS precompute the text embeddings to save memory.
* **pure textual inversion** - to support the full range from pivotal tuning to textual inversion we introduce `--train_transformer_frac` which controls the amount of epochs the transformer LoRA layers are trained. By default, `--train_transformer_frac==1`, to trigger a textual inversion run set `--train_transformer_frac==0`. Values between 0 and 1 are supported as well, and we welcome the community to experiment w/ different settings and share the results!
* **token initializer** - similar to the original textual inversion work, you can specify a token of your choosing as the starting point for training. By default, when enabling `--train_text_encoder_ti`, the new inserted tokens are initialized randomly. You can specify a token in `--initializer_token` such that the starting point for the trained embeddings will be the embeddings associated with your chosen `--initializer_token`.
* **token initializer** - similar to the original textual inversion work, you can specify a concept of your choosing as the starting point for training. By default, when enabling `--train_text_encoder_ti`, the new inserted tokens are initialized randomly. You can specify a token in `--initializer_concept` such that the starting point for the trained embeddings will be the embeddings associated with your chosen `--initializer_concept`.
## Training examples
......@@ -147,7 +147,6 @@ accelerate launch train_dreambooth_lora_flux_advanced.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--instance_prompt="3d icon in the style of TOK" \
--validation_prompt="a TOK icon of an astronaut riding a horse, in the style of TOK" \
--output_dir=$OUTPUT_DIR \
--caption_column="prompt" \
--mixed_precision="bf16" \
......@@ -165,7 +164,7 @@ accelerate launch train_dreambooth_lora_flux_advanced.py \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--rank=8 \
--max_train_steps=1000 \
--max_train_steps=700 \
--checkpointing_steps=2000 \
--seed="0" \
--push_to_hub
......@@ -190,7 +189,6 @@ accelerate launch train_dreambooth_lora_flux_advanced.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--instance_prompt="3d icon in the style of TOK" \
--validation_prompt="a TOK icon of an astronaut riding a horse, in the style of TOK" \
--output_dir=$OUTPUT_DIR \
--caption_column="prompt" \
--mixed_precision="bf16" \
......@@ -209,7 +207,7 @@ accelerate launch train_dreambooth_lora_flux_advanced.py \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--rank=8 \
--max_train_steps=1000 \
--max_train_steps=700 \
--checkpointing_steps=2000 \
--seed="0" \
--push_to_hub
......@@ -229,7 +227,6 @@ accelerate launch train_dreambooth_lora_flux_advanced.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--instance_prompt="3d icon in the style of TOK" \
--validation_prompt="a TOK icon of an astronaut riding a horse, in the style of TOK" \
--output_dir=$OUTPUT_DIR \
--caption_column="prompt" \
--mixed_precision="bf16" \
......@@ -249,7 +246,7 @@ accelerate launch train_dreambooth_lora_flux_advanced.py \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--rank=8 \
--max_train_steps=1000 \
--max_train_steps=700 \
--checkpointing_steps=2000 \
--seed="0" \
--push_to_hub
......@@ -273,8 +270,9 @@ pipe = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev",
pipe.load_lora_weights(repo_id, weight_name="pytorch_lora_weights.safetensors")
```
2. now we load the pivotal tuning embeddings
💡note that if you didn't enable `--enable_t5_ti`, you only load the embeddings to the CLIP encoder
> [!NOTE] #1 if `--enable_t5_ti` wasn't passed, we only load the embeddings to the CLIP encoder.
> [!NOTE] #2 the number of tokens (i.e. <s0>,...,<si>) is either determined by `--num_new_tokens_per_abstraction` or by `--initializer_concept`. Make sure to update inference code accordingly :)
```python
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment