Unverified Commit 22b9cb08 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[From pretrained] Allow returning local path (#1450)

Allow returning local path
parent 25f850a2
...@@ -377,7 +377,8 @@ class DiffusionPipeline(ConfigMixin): ...@@ -377,7 +377,8 @@ class DiffusionPipeline(ConfigMixin):
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
setting this argument to `True` will raise an error. setting this argument to `True` will raise an error.
return_cached_folder (`bool`, *optional*, defaults to `False`):
If set to `True`, path to downloaded cached folder will be returned in addition to loaded pipeline.
kwargs (remaining dictionary of keyword arguments, *optional*): kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
specific pipeline class. The overwritten components are then directly passed to the pipelines specific pipeline class. The overwritten components are then directly passed to the pipelines
...@@ -430,33 +431,7 @@ class DiffusionPipeline(ConfigMixin): ...@@ -430,33 +431,7 @@ class DiffusionPipeline(ConfigMixin):
sess_options = kwargs.pop("sess_options", None) sess_options = kwargs.pop("sess_options", None)
device_map = kwargs.pop("device_map", None) device_map = kwargs.pop("device_map", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
return_cached_folder = kwargs.pop("return_cached_folder", False)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if device_map is not None and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `device_map=None`."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
if low_cpu_mem_usage is False and device_map is not None:
raise ValueError(
f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
)
# 1. Download the checkpoints and configs # 1. Download the checkpoints and configs
# use snapshot download here to get it working from from_pretrained # use snapshot download here to get it working from from_pretrained
...@@ -585,6 +560,33 @@ class DiffusionPipeline(ConfigMixin): ...@@ -585,6 +560,33 @@ class DiffusionPipeline(ConfigMixin):
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored." f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
) )
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if device_map is not None and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `device_map=None`."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
if low_cpu_mem_usage is False and device_map is not None:
raise ValueError(
f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
)
# import it here to avoid circular import # import it here to avoid circular import
from diffusers import pipelines from diffusers import pipelines
...@@ -704,6 +706,9 @@ class DiffusionPipeline(ConfigMixin): ...@@ -704,6 +706,9 @@ class DiffusionPipeline(ConfigMixin):
# 5. Instantiate the pipeline # 5. Instantiate the pipeline
model = pipeline_class(**init_kwargs) model = pipeline_class(**init_kwargs)
if return_cached_folder:
return model, cached_folder
return model return model
@staticmethod @staticmethod
......
...@@ -95,6 +95,35 @@ class DownloadTests(unittest.TestCase): ...@@ -95,6 +95,35 @@ class DownloadTests(unittest.TestCase):
# We need to never convert this tiny model to safetensors for this test to pass # We need to never convert this tiny model to safetensors for this test to pass
assert not any(f.endswith(".safetensors") for f in files) assert not any(f.endswith(".safetensors") for f in files)
def test_returned_cached_folder(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
_, local_path = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, return_cached_folder=True
)
pipe_2 = StableDiffusionPipeline.from_pretrained(local_path)
pipe = pipe.to(torch_device)
pipe_2 = pipe.to(torch_device)
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
if torch_device == "mps":
# device type MPS is not supported for torch.Generator() api.
generator = torch.manual_seed(0)
else:
generator = torch.Generator(device=torch_device).manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_download_safetensors(self): def test_download_safetensors(self):
with tempfile.TemporaryDirectory() as tmpdirname: with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights # pipeline has Flax weights
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment