Unverified Commit 1f0705ad authored by Sayak Paul's avatar Sayak Paul Committed by GitHub
Browse files

[Big refactor] move unets to `unets` module 🦋 (#6630)

* move unets to  module 🦋

* parameterize unet-level import.

* fix flax unet2dcondition model import

* models __init__

* mildly depcrecating models.unet_2d_blocks in favor of models.unets.unet_2d_blocks.

* noqa

* correct depcrecation behaviour

* inherit from the actual classes.

* Empty-Commit

* backwards compatibility for unet_2d.py

* backward compatibility for unet_2d_condition

* bc for unet_1d

* bc for unet_1d_blocks
parent 5e96333c
......@@ -22,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNetMotionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput
[[autodoc]] models.unets.unet_3d_condition.UNet3DConditionOutput
......@@ -22,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNet1DModel
## UNet1DOutput
[[autodoc]] models.unet_1d.UNet1DOutput
[[autodoc]] models.unets.unet_1d.UNet1DOutput
......@@ -22,10 +22,10 @@ The abstract from the paper is:
[[autodoc]] UNet2DConditionModel
## UNet2DConditionOutput
[[autodoc]] models.unet_2d_condition.UNet2DConditionOutput
[[autodoc]] models.unets.unet_2d_condition.UNet2DConditionOutput
## FlaxUNet2DConditionModel
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionModel
[[autodoc]] models.unets.unet_2d_condition_flax.FlaxUNet2DConditionModel
## FlaxUNet2DConditionOutput
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput
[[autodoc]] models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput
......@@ -22,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNet2DModel
## UNet2DOutput
[[autodoc]] models.unet_2d.UNet2DOutput
[[autodoc]] models.unets.unet_2d.UNet2DOutput
......@@ -22,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNet3DConditionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput
[[autodoc]] models.unets.unet_3d_condition.UNet3DConditionOutput
......@@ -26,7 +26,7 @@ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel, UNetMotionModel
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.models.unet_motion_model import MotionAdapter
from diffusers.models.unets.unet_motion_model import MotionAdapter
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import (
......
......@@ -8,7 +8,7 @@ import torch
from diffusers import StableDiffusionControlNetPipeline
from diffusers.models import ControlNetModel
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import logging
......
......@@ -7,7 +7,7 @@ import torch
from diffusers import StableDiffusionPipeline
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg
from diffusers.utils import PIL_INTERPOLATION, logging
......
......@@ -8,7 +8,7 @@ import torch
from diffusers import StableDiffusionXLPipeline
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.unet_2d_blocks import (
from diffusers.models.unets.unet_2d_blocks import (
CrossAttnDownBlock2D,
CrossAttnUpBlock2D,
DownBlock2D,
......
......@@ -26,7 +26,7 @@ from diffusers.models.attention_processor import USE_PEFT_BACKEND, AttentionProc
from diffusers.models.autoencoders import AutoencoderKL
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import (
from diffusers.models.unets.unet_2d_blocks import (
CrossAttnDownBlock2D,
CrossAttnUpBlock2D,
DownBlock2D,
......@@ -36,7 +36,7 @@ from diffusers.models.unet_2d_blocks import (
UpBlock2D,
Upsample2D,
)
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import BaseOutput, logging
......
......@@ -10,7 +10,7 @@ from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import VQModel
from diffusers.models.attention_processor import AttnProcessor
from diffusers.models.uvit_2d import UVit2DModel
from diffusers.models.unets.uvit_2d import UVit2DModel
from diffusers.pipelines.amused.pipeline_amused import AmusedPipeline
from diffusers.schedulers import AmusedScheduler
......
......@@ -14,7 +14,7 @@ from tqdm import tqdm
from diffusers import AutoencoderKL, ConsistencyDecoderVAE, DiffusionPipeline, StableDiffusionPipeline, UNet2DModel
from diffusers.models.autoencoders.vae import Encoder
from diffusers.models.embeddings import TimestepEmbedding
from diffusers.models.unet_2d_blocks import ResnetDownsampleBlock2D, ResnetUpsampleBlock2D, UNetMidBlock2D
from diffusers.models.unets.unet_2d_blocks import ResnetDownsampleBlock2D, ResnetUpsampleBlock2D, UNetMidBlock2D
args = ArgumentParser()
......
......@@ -382,7 +382,7 @@ except OptionalDependencyNotAvailable:
else:
_import_structure["models.controlnet_flax"] = ["FlaxControlNetModel"]
_import_structure["models.modeling_flax_utils"] = ["FlaxModelMixin"]
_import_structure["models.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
_import_structure["models.unets.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
_import_structure["models.vae_flax"] = ["FlaxAutoencoderKL"]
_import_structure["pipelines"].extend(["FlaxDiffusionPipeline"])
_import_structure["schedulers"].extend(
......@@ -711,7 +711,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_2d_condition_flax import FlaxUNet2DConditionModel
from .models.unets.unet_2d_condition_flax import FlaxUNet2DConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
......
......@@ -16,7 +16,7 @@ import numpy as np
import torch
import tqdm
from ...models.unet_1d import UNet1DModel
from ...models.unets.unet_1d import UNet1DModel
from ...pipelines import DiffusionPipeline
from ...utils.dummy_pt_objects import DDPMScheduler
from ...utils.torch_utils import randn_tensor
......
......@@ -39,19 +39,19 @@ if is_torch_available():
_import_structure["t5_film_transformer"] = ["T5FilmDecoder"]
_import_structure["transformer_2d"] = ["Transformer2DModel"]
_import_structure["transformer_temporal"] = ["TransformerTemporalModel"]
_import_structure["unet_1d"] = ["UNet1DModel"]
_import_structure["unet_2d"] = ["UNet2DModel"]
_import_structure["unet_2d_condition"] = ["UNet2DConditionModel"]
_import_structure["unet_3d_condition"] = ["UNet3DConditionModel"]
_import_structure["unet_kandinsky3"] = ["Kandinsky3UNet"]
_import_structure["unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
_import_structure["unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"]
_import_structure["uvit_2d"] = ["UVit2DModel"]
_import_structure["unets.unet_1d"] = ["UNet1DModel"]
_import_structure["unets.unet_2d"] = ["UNet2DModel"]
_import_structure["unets.unet_2d_condition"] = ["UNet2DConditionModel"]
_import_structure["unets.unet_3d_condition"] = ["UNet3DConditionModel"]
_import_structure["unets.unet_kandinsky3"] = ["Kandinsky3UNet"]
_import_structure["unets.unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
_import_structure["unets.unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"]
_import_structure["unets.uvit_2d"] = ["UVit2DModel"]
_import_structure["vq_model"] = ["VQModel"]
if is_flax_available():
_import_structure["controlnet_flax"] = ["FlaxControlNetModel"]
_import_structure["unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
_import_structure["unets.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
_import_structure["vae_flax"] = ["FlaxAutoencoderKL"]
......@@ -73,19 +73,22 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .t5_film_transformer import T5FilmDecoder
from .transformer_2d import Transformer2DModel
from .transformer_temporal import TransformerTemporalModel
from .unet_1d import UNet1DModel
from .unet_2d import UNet2DModel
from .unet_2d_condition import UNet2DConditionModel
from .unet_3d_condition import UNet3DConditionModel
from .unet_kandinsky3 import Kandinsky3UNet
from .unet_motion_model import MotionAdapter, UNetMotionModel
from .unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from .uvit_2d import UVit2DModel
from .unets import (
Kandinsky3UNet,
MotionAdapter,
UNet1DModel,
UNet2DConditionModel,
UNet2DModel,
UNet3DConditionModel,
UNetMotionModel,
UNetSpatioTemporalConditionModel,
UVit2DModel,
)
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_2d_condition_flax import FlaxUNet2DConditionModel
from .unets import FlaxUNet2DConditionModel
from .vae_flax import FlaxAutoencoderKL
else:
......
......@@ -157,7 +157,7 @@ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
self.use_slicing = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
......@@ -181,7 +181,7 @@ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
return processors
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
......@@ -216,7 +216,7 @@ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
......@@ -448,7 +448,7 @@ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
return DecoderOutput(sample=dec)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
......@@ -472,7 +472,7 @@ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
......
......@@ -23,7 +23,7 @@ from ...utils.accelerate_utils import apply_forward_hook
from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from ..unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder
from ..unets.unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
......@@ -242,7 +242,7 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin, FromOriginalVAEMixin
module.gradient_checkpointing = value
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
......@@ -266,7 +266,7 @@ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin, FromOriginalVAEMixin
return processors
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
......
......@@ -31,7 +31,7 @@ from ..attention_processor import (
AttnProcessor,
)
from ..modeling_utils import ModelMixin
from ..unet_2d import UNet2DModel
from ..unets.unet_2d import UNet2DModel
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
......@@ -187,7 +187,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
self.use_slicing = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
......@@ -211,7 +211,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
return processors
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
......@@ -246,7 +246,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
......
......@@ -22,7 +22,7 @@ from ...utils import BaseOutput, is_torch_version
from ...utils.torch_utils import randn_tensor
from ..activations import get_activation
from ..attention_processor import SpatialNorm
from ..unet_2d_blocks import (
from ..unets.unet_2d_blocks import (
AutoencoderTinyBlock,
UNetMidBlock2D,
get_down_block,
......
......@@ -30,8 +30,14 @@ from .attention_processor import (
)
from .embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2D, UNetMidBlock2DCrossAttn, get_down_block
from .unet_2d_condition import UNet2DConditionModel
from .unets.unet_2d_blocks import (
CrossAttnDownBlock2D,
DownBlock2D,
UNetMidBlock2D,
UNetMidBlock2DCrossAttn,
get_down_block,
)
from .unets.unet_2d_condition import UNet2DConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
......@@ -509,7 +515,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
return controlnet
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
......@@ -533,7 +539,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
return processors
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
......@@ -568,7 +574,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
......@@ -584,7 +590,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
self.set_attn_processor(processor)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
r"""
Enable sliced attention computation.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment