Unverified Commit 1e8cf276 authored by Dhruv Nair's avatar Dhruv Nair Committed by GitHub
Browse files

[CI] Nightly Test Updates (#9380)



* update

* update

* update

* update

* update

---------
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
parent 6cf8d98c
...@@ -20,7 +20,6 @@ import numpy as np ...@@ -20,7 +20,6 @@ import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
from huggingface_hub import hf_hub_download from huggingface_hub import hf_hub_download
from huggingface_hub.repocard import RepoCard
from safetensors.torch import load_file from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer from transformers import CLIPTextModel, CLIPTokenizer
...@@ -103,7 +102,7 @@ class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): ...@@ -103,7 +102,7 @@ class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
@slow @slow
@require_torch_gpu @require_torch_gpu
def test_integration_move_lora_cpu(self): def test_integration_move_lora_cpu(self):
path = "runwayml/stable-diffusion-v1-5" path = "Jiali/stable-diffusion-1.5"
lora_id = "takuma104/lora-test-text-encoder-lora-target" lora_id = "takuma104/lora-test-text-encoder-lora-target"
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
...@@ -162,7 +161,7 @@ class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): ...@@ -162,7 +161,7 @@ class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
def test_integration_move_lora_dora_cpu(self): def test_integration_move_lora_dora_cpu(self):
from peft import LoraConfig from peft import LoraConfig
path = "Lykon/dreamshaper-8" path = "Jiali/stable-diffusion-1.5"
unet_lora_config = LoraConfig( unet_lora_config = LoraConfig(
init_lora_weights="gaussian", init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"], target_modules=["to_k", "to_q", "to_v", "to_out.0"],
...@@ -222,7 +221,7 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -222,7 +221,7 @@ class LoraIntegrationTests(unittest.TestCase):
torch.cuda.empty_cache() torch.cuda.empty_cache()
def test_integration_logits_with_scale(self): def test_integration_logits_with_scale(self):
path = "runwayml/stable-diffusion-v1-5" path = "Jiali/stable-diffusion-1.5"
lora_id = "takuma104/lora-test-text-encoder-lora-target" lora_id = "takuma104/lora-test-text-encoder-lora-target"
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
...@@ -254,7 +253,7 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -254,7 +253,7 @@ class LoraIntegrationTests(unittest.TestCase):
release_memory(pipe) release_memory(pipe)
def test_integration_logits_no_scale(self): def test_integration_logits_no_scale(self):
path = "runwayml/stable-diffusion-v1-5" path = "Jiali/stable-diffusion-1.5"
lora_id = "takuma104/lora-test-text-encoder-lora-target" lora_id = "takuma104/lora-test-text-encoder-lora-target"
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
...@@ -284,8 +283,8 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -284,8 +283,8 @@ class LoraIntegrationTests(unittest.TestCase):
generator = torch.Generator("cpu").manual_seed(0) generator = torch.Generator("cpu").manual_seed(0)
lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example" lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"] base_model_id = "Jiali/stable-diffusion-1.5"
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
pipe = pipe.to(torch_device) pipe = pipe.to(torch_device)
...@@ -308,8 +307,8 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -308,8 +307,8 @@ class LoraIntegrationTests(unittest.TestCase):
generator = torch.Generator().manual_seed(0) generator = torch.Generator().manual_seed(0)
lora_model_id = "hf-internal-testing/lora-trained" lora_model_id = "hf-internal-testing/lora-trained"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"] base_model_id = "Jiali/stable-diffusion-1.5"
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
pipe = pipe.to(torch_device) pipe = pipe.to(torch_device)
...@@ -420,7 +419,7 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -420,7 +419,7 @@ class LoraIntegrationTests(unittest.TestCase):
def test_kohya_sd_v15_with_higher_dimensions(self): def test_kohya_sd_v15_with_higher_dimensions(self):
generator = torch.Generator().manual_seed(0) generator = torch.Generator().manual_seed(0)
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5", safety_checker=None).to(
torch_device torch_device
) )
lora_model_id = "hf-internal-testing/urushisato-lora" lora_model_id = "hf-internal-testing/urushisato-lora"
...@@ -444,8 +443,8 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -444,8 +443,8 @@ class LoraIntegrationTests(unittest.TestCase):
generator = torch.Generator().manual_seed(0) generator = torch.Generator().manual_seed(0)
lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4" lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"] base_model_id = "Jiali/stable-diffusion-1.5"
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
pipe = pipe.to(torch_device) pipe = pipe.to(torch_device)
...@@ -468,7 +467,7 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -468,7 +467,7 @@ class LoraIntegrationTests(unittest.TestCase):
prompt = "masterpiece, best quality, mountain" prompt = "masterpiece, best quality, mountain"
num_inference_steps = 2 num_inference_steps = 2
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5", safety_checker=None).to(
torch_device torch_device
) )
initial_images = pipe( initial_images = pipe(
...@@ -506,7 +505,7 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -506,7 +505,7 @@ class LoraIntegrationTests(unittest.TestCase):
prompt = "masterpiece, best quality, mountain" prompt = "masterpiece, best quality, mountain"
num_inference_steps = 2 num_inference_steps = 2
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5", safety_checker=None).to(
torch_device torch_device
) )
initial_images = pipe( initial_images = pipe(
...@@ -548,9 +547,9 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -548,9 +547,9 @@ class LoraIntegrationTests(unittest.TestCase):
def test_not_empty_state_dict(self): def test_not_empty_state_dict(self):
# Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again # Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again
pipe = AutoPipelineForText2Image.from_pretrained( pipe = AutoPipelineForText2Image.from_pretrained("Jiali/stable-diffusion-1.5", torch_dtype=torch.float16).to(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 torch_device
).to(torch_device) )
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors") cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors")
...@@ -562,9 +561,9 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -562,9 +561,9 @@ class LoraIntegrationTests(unittest.TestCase):
def test_load_unload_load_state_dict(self): def test_load_unload_load_state_dict(self):
# Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again # Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again
pipe = AutoPipelineForText2Image.from_pretrained( pipe = AutoPipelineForText2Image.from_pretrained("Jiali/stable-diffusion-1.5", torch_dtype=torch.float16).to(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 torch_device
).to(torch_device) )
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors") cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors")
...@@ -581,7 +580,7 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -581,7 +580,7 @@ class LoraIntegrationTests(unittest.TestCase):
release_memory(pipe) release_memory(pipe)
def test_sdv1_5_lcm_lora(self): def test_sdv1_5_lcm_lora(self):
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5", torch_dtype=torch.float16)
pipe.to(torch_device) pipe.to(torch_device)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
...@@ -609,7 +608,7 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -609,7 +608,7 @@ class LoraIntegrationTests(unittest.TestCase):
release_memory(pipe) release_memory(pipe)
def test_sdv1_5_lcm_lora_img2img(self): def test_sdv1_5_lcm_lora_img2img(self):
pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = AutoPipelineForImage2Image.from_pretrained("Jiali/stable-diffusion-1.5", torch_dtype=torch.float16)
pipe.to(torch_device) pipe.to(torch_device)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
...@@ -650,7 +649,7 @@ class LoraIntegrationTests(unittest.TestCase): ...@@ -650,7 +649,7 @@ class LoraIntegrationTests(unittest.TestCase):
This test simply checks that loading a LoRA with an empty network alpha works fine This test simply checks that loading a LoRA with an empty network alpha works fine
See: https://github.com/huggingface/diffusers/issues/5606 See: https://github.com/huggingface/diffusers/issues/5606
""" """
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipeline = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
pipeline.enable_sequential_cpu_offload() pipeline.enable_sequential_cpu_offload()
civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors") civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors")
pipeline.load_lora_weights(civitai_path, adapter_name="ahri") pipeline.load_lora_weights(civitai_path, adapter_name="ahri")
......
...@@ -1051,7 +1051,7 @@ class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase): ...@@ -1051,7 +1051,7 @@ class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
def test_sd(self): def test_sd(self):
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None) pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5", vae=vae, safety_checker=None)
pipe.to(torch_device) pipe.to(torch_device)
out = pipe( out = pipe(
...@@ -1099,7 +1099,7 @@ class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase): ...@@ -1099,7 +1099,7 @@ class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
"openai/consistency-decoder", torch_dtype=torch.float16 "openai/consistency-decoder", torch_dtype=torch.float16
) # TODO - update ) # TODO - update
pipe = StableDiffusionPipeline.from_pretrained( pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", "Jiali/stable-diffusion-1.5",
torch_dtype=torch.float16, torch_dtype=torch.float16,
vae=vae, vae=vae,
safety_checker=None, safety_checker=None,
...@@ -1124,7 +1124,7 @@ class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase): ...@@ -1124,7 +1124,7 @@ class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
def test_vae_tiling(self): def test_vae_tiling(self):
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained( pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16 "Jiali/stable-diffusion-1.5", vae=vae, safety_checker=None, torch_dtype=torch.float16
) )
pipe.to(torch_device) pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
......
...@@ -1376,7 +1376,7 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase): ...@@ -1376,7 +1376,7 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase):
@require_torch_accelerator @require_torch_accelerator
@skip_mps @skip_mps
def test_compvis_sd_v1_5(self, seed, timestep, expected_slice): def test_compvis_sd_v1_5(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5") model = self.get_unet_model(model_id="Jiali/stable-diffusion-1.5")
latents = self.get_latents(seed) latents = self.get_latents(seed)
encoder_hidden_states = self.get_encoder_hidden_states(seed) encoder_hidden_states = self.get_encoder_hidden_states(seed)
...@@ -1404,7 +1404,7 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase): ...@@ -1404,7 +1404,7 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase):
) )
@require_torch_accelerator_with_fp16 @require_torch_accelerator_with_fp16
def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice): def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True) model = self.get_unet_model(model_id="Jiali/stable-diffusion-1.5", fp16=True)
latents = self.get_latents(seed, fp16=True) latents = self.get_latents(seed, fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
...@@ -1433,7 +1433,7 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase): ...@@ -1433,7 +1433,7 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase):
@require_torch_accelerator @require_torch_accelerator
@skip_mps @skip_mps
def test_compvis_sd_inpaint(self, seed, timestep, expected_slice): def test_compvis_sd_inpaint(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting") model = self.get_unet_model(model_id="botp/stable-diffusion-v1-5-inpainting")
latents = self.get_latents(seed, shape=(4, 9, 64, 64)) latents = self.get_latents(seed, shape=(4, 9, 64, 64))
encoder_hidden_states = self.get_encoder_hidden_states(seed) encoder_hidden_states = self.get_encoder_hidden_states(seed)
...@@ -1461,7 +1461,7 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase): ...@@ -1461,7 +1461,7 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase):
) )
@require_torch_accelerator_with_fp16 @require_torch_accelerator_with_fp16
def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice): def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True) model = self.get_unet_model(model_id="botp/stable-diffusion-v1-5-inpainting", fp16=True)
latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True) latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
......
...@@ -13,7 +13,6 @@ ...@@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
...@@ -21,7 +20,12 @@ import torch ...@@ -21,7 +20,12 @@ import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import AmusedPipeline, AmusedScheduler, UVit2DModel, VQModel from diffusers import AmusedPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin from ..test_pipelines_common import PipelineTesterMixin
...@@ -65,9 +69,7 @@ class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -65,9 +69,7 @@ class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
vqvae = VQModel( vqvae = VQModel(
act_fn="silu", act_fn="silu",
block_out_channels=[8], block_out_channels=[8],
down_block_types=[ down_block_types=["DownEncoderBlock2D"],
"DownEncoderBlock2D",
],
in_channels=3, in_channels=3,
latent_channels=8, latent_channels=8,
layers_per_block=1, layers_per_block=1,
...@@ -75,9 +77,7 @@ class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -75,9 +77,7 @@ class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
num_vq_embeddings=8, num_vq_embeddings=8,
out_channels=3, out_channels=3,
sample_size=8, sample_size=8,
up_block_types=[ up_block_types=["UpDecoderBlock2D"],
"UpDecoderBlock2D",
],
mid_block_add_attention=False, mid_block_add_attention=False,
lookup_from_codebook=True, lookup_from_codebook=True,
) )
...@@ -96,7 +96,6 @@ class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -96,7 +96,6 @@ class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
) )
text_encoder = CLIPTextModelWithProjection(text_encoder_config) text_encoder = CLIPTextModelWithProjection(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = { components = {
"transformer": transformer, "transformer": transformer,
"scheduler": scheduler, "scheduler": scheduler,
...@@ -135,47 +134,37 @@ class AmusedPipelineSlowTests(unittest.TestCase): ...@@ -135,47 +134,37 @@ class AmusedPipelineSlowTests(unittest.TestCase):
def test_amused_256(self): def test_amused_256(self):
pipe = AmusedPipeline.from_pretrained("amused/amused-256") pipe = AmusedPipeline.from_pretrained("amused/amused-256")
pipe.to(torch_device) pipe.to(torch_device)
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3) assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.4011, 0.3992, 0.3790, 0.3856, 0.3772, 0.3711, 0.3919, 0.3850, 0.3625]) expected_slice = np.array([0.4011, 0.3992, 0.379, 0.3856, 0.3772, 0.3711, 0.3919, 0.385, 0.3625])
assert np.abs(image_slice - expected_slice).max() < 3e-3 assert np.abs(image_slice - expected_slice).max() < 0.003
def test_amused_256_fp16(self): def test_amused_256_fp16(self):
pipe = AmusedPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16) pipe = AmusedPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16)
pipe.to(torch_device) pipe.to(torch_device)
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3) assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0554, 0.05129, 0.0344, 0.0452, 0.0476, 0.0271, 0.0495, 0.0527, 0.0158]) expected_slice = np.array([0.0554, 0.05129, 0.0344, 0.0452, 0.0476, 0.0271, 0.0495, 0.0527, 0.0158])
assert np.abs(image_slice - expected_slice).max() < 7e-3 assert np.abs(image_slice - expected_slice).max() < 0.007
def test_amused_512(self): def test_amused_512(self):
pipe = AmusedPipeline.from_pretrained("amused/amused-512") pipe = AmusedPipeline.from_pretrained("amused/amused-512")
pipe.to(torch_device) pipe.to(torch_device)
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3) assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.9960, 0.9960, 0.9946, 0.9980, 0.9947, 0.9932, 0.9960, 0.9961, 0.9947]) expected_slice = np.array([0.1199, 0.1171, 0.1229, 0.1188, 0.1210, 0.1147, 0.1260, 0.1346, 0.1152])
assert np.abs(image_slice - expected_slice).max() < 3e-3 assert np.abs(image_slice - expected_slice).max() < 0.003
def test_amused_512_fp16(self): def test_amused_512_fp16(self):
pipe = AmusedPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16) pipe = AmusedPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
pipe.to(torch_device) pipe.to(torch_device)
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3) assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.9983, 1.0, 1.0, 1.0, 1.0, 0.9989, 0.9994, 0.9976, 0.9977]) expected_slice = np.array([0.1509, 0.1492, 0.1531, 0.1485, 0.1501, 0.1465, 0.1581, 0.1690, 0.1499])
assert np.abs(image_slice - expected_slice).max() < 3e-3 assert np.abs(image_slice - expected_slice).max() < 0.003
...@@ -13,7 +13,6 @@ ...@@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
...@@ -22,7 +21,12 @@ from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokeni ...@@ -22,7 +21,12 @@ from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokeni
from diffusers import AmusedImg2ImgPipeline, AmusedScheduler, UVit2DModel, VQModel from diffusers import AmusedImg2ImgPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils import load_image from diffusers.utils import load_image
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin from ..test_pipelines_common import PipelineTesterMixin
...@@ -35,9 +39,7 @@ class AmusedImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -35,9 +39,7 @@ class AmusedImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AmusedImg2ImgPipeline pipeline_class = AmusedImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "latents"} params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - { required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
"latents",
}
def get_dummy_components(self): def get_dummy_components(self):
torch.manual_seed(0) torch.manual_seed(0)
...@@ -69,19 +71,15 @@ class AmusedImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -69,19 +71,15 @@ class AmusedImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
vqvae = VQModel( vqvae = VQModel(
act_fn="silu", act_fn="silu",
block_out_channels=[8], block_out_channels=[8],
down_block_types=[ down_block_types=["DownEncoderBlock2D"],
"DownEncoderBlock2D",
],
in_channels=3, in_channels=3,
latent_channels=8, latent_channels=8,
layers_per_block=1, layers_per_block=1,
norm_num_groups=8, norm_num_groups=8,
num_vq_embeddings=32, # reducing this to 16 or 8 -> RuntimeError: "cdist_cuda" not implemented for 'Half' num_vq_embeddings=32,
out_channels=3, out_channels=3,
sample_size=8, sample_size=8,
up_block_types=[ up_block_types=["UpDecoderBlock2D"],
"UpDecoderBlock2D",
],
mid_block_add_attention=False, mid_block_add_attention=False,
lookup_from_codebook=True, lookup_from_codebook=True,
) )
...@@ -100,7 +98,6 @@ class AmusedImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -100,7 +98,6 @@ class AmusedImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
) )
text_encoder = CLIPTextModelWithProjection(text_encoder_config) text_encoder = CLIPTextModelWithProjection(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = { components = {
"transformer": transformer, "transformer": transformer,
"scheduler": scheduler, "scheduler": scheduler,
...@@ -139,13 +136,11 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase): ...@@ -139,13 +136,11 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase):
def test_amused_256(self): def test_amused_256(self):
pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-256") pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-256")
pipe.to(torch_device) pipe.to(torch_device)
image = ( image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg") load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg")
.resize((256, 256)) .resize((256, 256))
.convert("RGB") .convert("RGB")
) )
image = pipe( image = pipe(
"winter mountains", "winter mountains",
image, image,
...@@ -153,24 +148,19 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase): ...@@ -153,24 +148,19 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase):
num_inference_steps=2, num_inference_steps=2,
output_type="np", output_type="np",
).images ).images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3) assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.9993, 1.0, 0.9996, 1.0, 0.9995, 0.9925, 0.9990, 0.9954, 1.0]) expected_slice = np.array([0.9993, 1.0, 0.9996, 1.0, 0.9995, 0.9925, 0.999, 0.9954, 1.0])
assert np.abs(image_slice - expected_slice).max() < 0.01
assert np.abs(image_slice - expected_slice).max() < 1e-2
def test_amused_256_fp16(self): def test_amused_256_fp16(self):
pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-256", torch_dtype=torch.float16, variant="fp16") pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-256", torch_dtype=torch.float16, variant="fp16")
pipe.to(torch_device) pipe.to(torch_device)
image = ( image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg") load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg")
.resize((256, 256)) .resize((256, 256))
.convert("RGB") .convert("RGB")
) )
image = pipe( image = pipe(
"winter mountains", "winter mountains",
image, image,
...@@ -178,24 +168,19 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase): ...@@ -178,24 +168,19 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase):
num_inference_steps=2, num_inference_steps=2,
output_type="np", output_type="np",
).images ).images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3) assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.9980, 0.9980, 0.9940, 0.9944, 0.9960, 0.9908, 1.0, 1.0, 0.9986]) expected_slice = np.array([0.998, 0.998, 0.994, 0.9944, 0.996, 0.9908, 1.0, 1.0, 0.9986])
assert np.abs(image_slice - expected_slice).max() < 0.01
assert np.abs(image_slice - expected_slice).max() < 1e-2
def test_amused_512(self): def test_amused_512(self):
pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-512") pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-512")
pipe.to(torch_device) pipe.to(torch_device)
image = ( image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg") load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg")
.resize((512, 512)) .resize((512, 512))
.convert("RGB") .convert("RGB")
) )
image = pipe( image = pipe(
"winter mountains", "winter mountains",
image, image,
...@@ -203,23 +188,20 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase): ...@@ -203,23 +188,20 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase):
num_inference_steps=2, num_inference_steps=2,
output_type="np", output_type="np",
).images ).images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3) assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1344, 0.0985, 0.0, 0.1194, 0.1809, 0.0765, 0.0854, 0.1371, 0.0933]) expected_slice = np.array([0.2809, 0.1879, 0.2027, 0.2418, 0.1852, 0.2145, 0.2484, 0.2425, 0.2317])
assert np.abs(image_slice - expected_slice).max() < 0.1 assert np.abs(image_slice - expected_slice).max() < 0.1
def test_amused_512_fp16(self): def test_amused_512_fp16(self):
pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16) pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
pipe.to(torch_device) pipe.to(torch_device)
image = ( image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg") load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg")
.resize((512, 512)) .resize((512, 512))
.convert("RGB") .convert("RGB")
) )
image = pipe( image = pipe(
"winter mountains", "winter mountains",
image, image,
...@@ -227,9 +209,8 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase): ...@@ -227,9 +209,8 @@ class AmusedImg2ImgPipelineSlowTests(unittest.TestCase):
num_inference_steps=2, num_inference_steps=2,
output_type="np", output_type="np",
).images ).images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3) assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1536, 0.1767, 0.0227, 0.1079, 0.2400, 0.1427, 0.1511, 0.1564, 0.1542]) expected_slice = np.array([0.2795, 0.1867, 0.2028, 0.2450, 0.1856, 0.2140, 0.2473, 0.2406, 0.2313])
assert np.abs(image_slice - expected_slice).max() < 0.1 assert np.abs(image_slice - expected_slice).max() < 0.1
...@@ -13,7 +13,6 @@ ...@@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
...@@ -22,7 +21,12 @@ from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokeni ...@@ -22,7 +21,12 @@ from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokeni
from diffusers import AmusedInpaintPipeline, AmusedScheduler, UVit2DModel, VQModel from diffusers import AmusedInpaintPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils import load_image from diffusers.utils import load_image
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineTesterMixin from ..test_pipelines_common import PipelineTesterMixin
...@@ -35,9 +39,7 @@ class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -35,9 +39,7 @@ class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AmusedInpaintPipeline pipeline_class = AmusedInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - { required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
"latents",
}
def get_dummy_components(self): def get_dummy_components(self):
torch.manual_seed(0) torch.manual_seed(0)
...@@ -50,7 +52,7 @@ class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -50,7 +52,7 @@ class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
micro_cond_embed_dim=10, micro_cond_embed_dim=10,
encoder_hidden_size=8, encoder_hidden_size=8,
vocab_size=32, vocab_size=32,
codebook_size=32, # codebook size needs to be consistent with num_vq_embeddings for inpaint tests codebook_size=32,
in_channels=8, in_channels=8,
block_out_channels=8, block_out_channels=8,
num_res_blocks=1, num_res_blocks=1,
...@@ -69,19 +71,15 @@ class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -69,19 +71,15 @@ class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
vqvae = VQModel( vqvae = VQModel(
act_fn="silu", act_fn="silu",
block_out_channels=[8], block_out_channels=[8],
down_block_types=[ down_block_types=["DownEncoderBlock2D"],
"DownEncoderBlock2D",
],
in_channels=3, in_channels=3,
latent_channels=8, latent_channels=8,
layers_per_block=1, layers_per_block=1,
norm_num_groups=8, norm_num_groups=8,
num_vq_embeddings=32, # reducing this to 16 or 8 -> RuntimeError: "cdist_cuda" not implemented for 'Half' num_vq_embeddings=32,
out_channels=3, out_channels=3,
sample_size=8, sample_size=8,
up_block_types=[ up_block_types=["UpDecoderBlock2D"],
"UpDecoderBlock2D",
],
mid_block_add_attention=False, mid_block_add_attention=False,
lookup_from_codebook=True, lookup_from_codebook=True,
) )
...@@ -100,7 +98,6 @@ class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -100,7 +98,6 @@ class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
) )
text_encoder = CLIPTextModelWithProjection(text_encoder_config) text_encoder = CLIPTextModelWithProjection(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = { components = {
"transformer": transformer, "transformer": transformer,
"scheduler": scheduler, "scheduler": scheduler,
...@@ -143,13 +140,11 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -143,13 +140,11 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
def test_amused_256(self): def test_amused_256(self):
pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256") pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256")
pipe.to(torch_device) pipe.to(torch_device)
image = ( image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg") load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((256, 256)) .resize((256, 256))
.convert("RGB") .convert("RGB")
) )
mask_image = ( mask_image = (
load_image( load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png" "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
...@@ -157,7 +152,6 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -157,7 +152,6 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
.resize((256, 256)) .resize((256, 256))
.convert("L") .convert("L")
) )
image = pipe( image = pipe(
"winter mountains", "winter mountains",
image, image,
...@@ -166,9 +160,7 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -166,9 +160,7 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
num_inference_steps=2, num_inference_steps=2,
output_type="np", output_type="np",
).images ).images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3) assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0699, 0.0716, 0.0608, 0.0715, 0.0797, 0.0638, 0.0802, 0.0924, 0.0634]) expected_slice = np.array([0.0699, 0.0716, 0.0608, 0.0715, 0.0797, 0.0638, 0.0802, 0.0924, 0.0634])
assert np.abs(image_slice - expected_slice).max() < 0.1 assert np.abs(image_slice - expected_slice).max() < 0.1
...@@ -176,13 +168,11 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -176,13 +168,11 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
def test_amused_256_fp16(self): def test_amused_256_fp16(self):
pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16) pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16)
pipe.to(torch_device) pipe.to(torch_device)
image = ( image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg") load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((256, 256)) .resize((256, 256))
.convert("RGB") .convert("RGB")
) )
mask_image = ( mask_image = (
load_image( load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png" "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
...@@ -190,7 +180,6 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -190,7 +180,6 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
.resize((256, 256)) .resize((256, 256))
.convert("L") .convert("L")
) )
image = pipe( image = pipe(
"winter mountains", "winter mountains",
image, image,
...@@ -199,23 +188,19 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -199,23 +188,19 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
num_inference_steps=2, num_inference_steps=2,
output_type="np", output_type="np",
).images ).images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3) assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0735, 0.0749, 0.0650, 0.0739, 0.0805, 0.0667, 0.0802, 0.0923, 0.0622]) expected_slice = np.array([0.0735, 0.0749, 0.065, 0.0739, 0.0805, 0.0667, 0.0802, 0.0923, 0.0622])
assert np.abs(image_slice - expected_slice).max() < 0.1 assert np.abs(image_slice - expected_slice).max() < 0.1
def test_amused_512(self): def test_amused_512(self):
pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512") pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512")
pipe.to(torch_device) pipe.to(torch_device)
image = ( image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg") load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((512, 512)) .resize((512, 512))
.convert("RGB") .convert("RGB")
) )
mask_image = ( mask_image = (
load_image( load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png" "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
...@@ -223,7 +208,6 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -223,7 +208,6 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
.resize((512, 512)) .resize((512, 512))
.convert("L") .convert("L")
) )
image = pipe( image = pipe(
"winter mountains", "winter mountains",
image, image,
...@@ -232,9 +216,7 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -232,9 +216,7 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
num_inference_steps=2, num_inference_steps=2,
output_type="np", output_type="np",
).images ).images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3) assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005, 0.0]) expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005, 0.0])
assert np.abs(image_slice - expected_slice).max() < 0.05 assert np.abs(image_slice - expected_slice).max() < 0.05
...@@ -242,13 +224,11 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -242,13 +224,11 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
def test_amused_512_fp16(self): def test_amused_512_fp16(self):
pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16) pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
pipe.to(torch_device) pipe.to(torch_device)
image = ( image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg") load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((512, 512)) .resize((512, 512))
.convert("RGB") .convert("RGB")
) )
mask_image = ( mask_image = (
load_image( load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png" "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
...@@ -256,7 +236,6 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -256,7 +236,6 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
.resize((512, 512)) .resize((512, 512))
.convert("L") .convert("L")
) )
image = pipe( image = pipe(
"winter mountains", "winter mountains",
image, image,
...@@ -265,9 +244,8 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase): ...@@ -265,9 +244,8 @@ class AmusedInpaintPipelineSlowTests(unittest.TestCase):
num_inference_steps=2, num_inference_steps=2,
output_type="np", output_type="np",
).images ).images
image_slice = image[0, -3:, -3:, -1].flatten() image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3) assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0025, 0.0]) expected_slice = np.array([0.0227, 0.0157, 0.0098, 0.0213, 0.0250, 0.0127, 0.0280, 0.0380, 0.0095])
assert np.abs(image_slice - expected_slice).max() < 3e-3 assert np.abs(image_slice - expected_slice).max() < 0.003
...@@ -73,7 +73,7 @@ def _test_stable_diffusion_compile(in_queue, out_queue, timeout): ...@@ -73,7 +73,7 @@ def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.to("cuda") pipe.to("cuda")
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -715,7 +715,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -715,7 +715,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -742,7 +742,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -742,7 +742,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -769,7 +769,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -769,7 +769,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -796,7 +796,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -796,7 +796,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -823,7 +823,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -823,7 +823,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -850,7 +850,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -850,7 +850,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -877,7 +877,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -877,7 +877,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -904,7 +904,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -904,7 +904,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -935,7 +935,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -935,7 +935,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing() pipe.enable_attention_slicing()
...@@ -961,7 +961,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -961,7 +961,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -993,7 +993,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -993,7 +993,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
...@@ -1035,7 +1035,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase): ...@@ -1035,7 +1035,7 @@ class ControlNetPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle") controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -1081,7 +1081,7 @@ class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase): ...@@ -1081,7 +1081,7 @@ class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase):
controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")
pipe = StableDiffusionControlNetPipeline.from_pretrained( pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=[controlnet_pose, controlnet_canny] "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=[controlnet_pose, controlnet_canny]
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
......
...@@ -407,7 +407,7 @@ class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase): ...@@ -407,7 +407,7 @@ class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
......
...@@ -459,7 +459,7 @@ class ControlNetInpaintPipelineSlowTests(unittest.TestCase): ...@@ -459,7 +459,7 @@ class ControlNetInpaintPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", safety_checker=None, controlnet=controlnet "botp/stable-diffusion-v1-5-inpainting", safety_checker=None, controlnet=controlnet
) )
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -504,7 +504,7 @@ class ControlNetInpaintPipelineSlowTests(unittest.TestCase): ...@@ -504,7 +504,7 @@ class ControlNetInpaintPipelineSlowTests(unittest.TestCase):
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint") controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint")
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet "Jiali/stable-diffusion-1.5", safety_checker=None, controlnet=controlnet
) )
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload()
......
...@@ -41,7 +41,7 @@ class FlaxControlNetPipelineIntegrationTests(unittest.TestCase): ...@@ -41,7 +41,7 @@ class FlaxControlNetPipelineIntegrationTests(unittest.TestCase):
"lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.bfloat16 "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.bfloat16
) )
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 "Jiali/stable-diffusion-1.5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16
) )
params["controlnet"] = controlnet_params params["controlnet"] = controlnet_params
...@@ -86,7 +86,7 @@ class FlaxControlNetPipelineIntegrationTests(unittest.TestCase): ...@@ -86,7 +86,7 @@ class FlaxControlNetPipelineIntegrationTests(unittest.TestCase):
"lllyasviel/sd-controlnet-openpose", from_pt=True, dtype=jnp.bfloat16 "lllyasviel/sd-controlnet-openpose", from_pt=True, dtype=jnp.bfloat16
) )
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 "Jiali/stable-diffusion-1.5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16
) )
params["controlnet"] = controlnet_params params["controlnet"] = controlnet_params
......
...@@ -170,7 +170,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin): ...@@ -170,7 +170,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin):
def test_text_to_image(self): def test_text_to_image(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained( pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype "Jiali/stable-diffusion-1.5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
) )
pipeline.to(torch_device) pipeline.to(torch_device)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
...@@ -200,7 +200,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin): ...@@ -200,7 +200,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin):
def test_image_to_image(self): def test_image_to_image(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionImg2ImgPipeline.from_pretrained( pipeline = StableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype "Jiali/stable-diffusion-1.5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
) )
pipeline.to(torch_device) pipeline.to(torch_device)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
...@@ -232,7 +232,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin): ...@@ -232,7 +232,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin):
def test_inpainting(self): def test_inpainting(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionInpaintPipeline.from_pretrained( pipeline = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype "Jiali/stable-diffusion-1.5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
) )
pipeline.to(torch_device) pipeline.to(torch_device)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
...@@ -260,7 +260,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin): ...@@ -260,7 +260,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin):
def test_text_to_image_model_cpu_offload(self): def test_text_to_image_model_cpu_offload(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained( pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype "Jiali/stable-diffusion-1.5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
) )
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipeline.to(torch_device) pipeline.to(torch_device)
...@@ -287,7 +287,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin): ...@@ -287,7 +287,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin):
def test_text_to_image_full_face(self): def test_text_to_image_full_face(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained( pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype "Jiali/stable-diffusion-1.5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
) )
pipeline.to(torch_device) pipeline.to(torch_device)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-full-face_sd15.bin") pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-full-face_sd15.bin")
...@@ -304,7 +304,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin): ...@@ -304,7 +304,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin):
def test_unload(self): def test_unload(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained( pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype "Jiali/stable-diffusion-1.5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
) )
before_processors = [attn_proc.__class__ for attn_proc in pipeline.unet.attn_processors.values()] before_processors = [attn_proc.__class__ for attn_proc in pipeline.unet.attn_processors.values()]
pipeline.to(torch_device) pipeline.to(torch_device)
...@@ -323,7 +323,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin): ...@@ -323,7 +323,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin):
def test_multi(self): def test_multi(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained( pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype "Jiali/stable-diffusion-1.5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
) )
pipeline.to(torch_device) pipeline.to(torch_device)
pipeline.load_ip_adapter( pipeline.load_ip_adapter(
...@@ -343,7 +343,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin): ...@@ -343,7 +343,7 @@ class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin):
def test_text_to_image_face_id(self): def test_text_to_image_face_id(self):
pipeline = StableDiffusionPipeline.from_pretrained( pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, torch_dtype=self.dtype "Jiali/stable-diffusion-1.5", safety_checker=None, torch_dtype=self.dtype
) )
pipeline.to(torch_device) pipeline.to(torch_device)
pipeline.load_ip_adapter( pipeline.load_ip_adapter(
......
...@@ -224,7 +224,7 @@ class LEditsPPPipelineStableDiffusionSlowTests(unittest.TestCase): ...@@ -224,7 +224,7 @@ class LEditsPPPipelineStableDiffusionSlowTests(unittest.TestCase):
def test_ledits_pp_editing(self): def test_ledits_pp_editing(self):
pipe = LEditsPPPipelineStableDiffusion.from_pretrained( pipe = LEditsPPPipelineStableDiffusion.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, torch_dtype=torch.float16 "Jiali/stable-diffusion-1.5", safety_checker=None, torch_dtype=torch.float16
) )
pipe = pipe.to(torch_device) pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
......
...@@ -33,7 +33,6 @@ from diffusers.utils import logging ...@@ -33,7 +33,6 @@ from diffusers.utils import logging
from diffusers.utils.testing_utils import ( from diffusers.utils.testing_utils import (
CaptureLogger, CaptureLogger,
enable_full_determinism, enable_full_determinism,
print_tensor_test,
torch_device, torch_device,
) )
...@@ -173,7 +172,6 @@ class PixArtSigmaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase): ...@@ -173,7 +172,6 @@ class PixArtSigmaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
inputs = self.get_dummy_inputs(device) inputs = self.get_dummy_inputs(device)
image = pipe_pag(**inputs).images image = pipe_pag(**inputs).images
image_slice = image[0, -3:, -3:, -1] image_slice = image[0, -3:, -3:, -1]
print_tensor_test(image_slice)
assert image.shape == ( assert image.shape == (
1, 1,
......
...@@ -283,7 +283,7 @@ class StableDiffusionPAGPipelineFastTests( ...@@ -283,7 +283,7 @@ class StableDiffusionPAGPipelineFastTests(
@require_torch_gpu @require_torch_gpu
class StableDiffusionPAGPipelineIntegrationTests(unittest.TestCase): class StableDiffusionPAGPipelineIntegrationTests(unittest.TestCase):
pipeline_class = StableDiffusionPAGPipeline pipeline_class = StableDiffusionPAGPipeline
repo_id = "runwayml/stable-diffusion-v1-5" repo_id = "Jiali/stable-diffusion-1.5"
def setUp(self): def setUp(self):
super().setUp() super().setUp()
......
...@@ -287,7 +287,7 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase): ...@@ -287,7 +287,7 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
def test_positive_guidance(self): def test_positive_guidance(self):
torch_device = "cuda" torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
pipe = pipe.to(torch_device) pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -370,7 +370,7 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase): ...@@ -370,7 +370,7 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
def test_negative_guidance(self): def test_negative_guidance(self):
torch_device = "cuda" torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
pipe = pipe.to(torch_device) pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -453,7 +453,7 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase): ...@@ -453,7 +453,7 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
def test_multi_cond_guidance(self): def test_multi_cond_guidance(self):
torch_device = "cuda" torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
pipe = pipe.to(torch_device) pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
...@@ -536,7 +536,7 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase): ...@@ -536,7 +536,7 @@ class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase):
def test_guidance_fp16(self): def test_guidance_fp16(self):
torch_device = "cuda" torch_device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5", torch_dtype=torch.float16)
pipe = pipe.to(torch_device) pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None) pipe.set_progress_bar_config(disable=None)
......
...@@ -250,10 +250,10 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase): ...@@ -250,10 +250,10 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
def test_inference_ddim(self): def test_inference_ddim(self):
ddim_scheduler = DDIMScheduler.from_pretrained( ddim_scheduler = DDIMScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx" "Jiali/stable-diffusion-1.5", subfolder="scheduler", revision="onnx"
) )
sd_pipe = OnnxStableDiffusionPipeline.from_pretrained( sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", "Jiali/stable-diffusion-1.5",
revision="onnx", revision="onnx",
scheduler=ddim_scheduler, scheduler=ddim_scheduler,
safety_checker=None, safety_checker=None,
...@@ -276,10 +276,10 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase): ...@@ -276,10 +276,10 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
def test_inference_k_lms(self): def test_inference_k_lms(self):
lms_scheduler = LMSDiscreteScheduler.from_pretrained( lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx" "Jiali/stable-diffusion-1.5", subfolder="scheduler", revision="onnx"
) )
sd_pipe = OnnxStableDiffusionPipeline.from_pretrained( sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", "Jiali/stable-diffusion-1.5",
revision="onnx", revision="onnx",
scheduler=lms_scheduler, scheduler=lms_scheduler,
safety_checker=None, safety_checker=None,
...@@ -327,7 +327,7 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase): ...@@ -327,7 +327,7 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
test_callback_fn.has_been_called = False test_callback_fn.has_been_called = False
pipe = OnnxStableDiffusionPipeline.from_pretrained( pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", "Jiali/stable-diffusion-1.5",
revision="onnx", revision="onnx",
safety_checker=None, safety_checker=None,
feature_extractor=None, feature_extractor=None,
...@@ -352,7 +352,7 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase): ...@@ -352,7 +352,7 @@ class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase):
def test_stable_diffusion_no_safety_checker(self): def test_stable_diffusion_no_safety_checker(self):
pipe = OnnxStableDiffusionPipeline.from_pretrained( pipe = OnnxStableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", "Jiali/stable-diffusion-1.5",
revision="onnx", revision="onnx",
safety_checker=None, safety_checker=None,
feature_extractor=None, feature_extractor=None,
......
...@@ -210,10 +210,10 @@ class OnnxStableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase): ...@@ -210,10 +210,10 @@ class OnnxStableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
) )
init_image = init_image.resize((768, 512)) init_image = init_image.resize((768, 512))
lms_scheduler = LMSDiscreteScheduler.from_pretrained( lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx" "Jiali/stable-diffusion-1.5", subfolder="scheduler", revision="onnx"
) )
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained( pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", "Jiali/stable-diffusion-1.5",
revision="onnx", revision="onnx",
scheduler=lms_scheduler, scheduler=lms_scheduler,
safety_checker=None, safety_checker=None,
......
...@@ -68,7 +68,7 @@ class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): ...@@ -68,7 +68,7 @@ class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
) )
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", "botp/stable-diffusion-v1-5-inpainting",
revision="onnx", revision="onnx",
safety_checker=None, safety_checker=None,
feature_extractor=None, feature_extractor=None,
...@@ -107,10 +107,10 @@ class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): ...@@ -107,10 +107,10 @@ class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
) )
lms_scheduler = LMSDiscreteScheduler.from_pretrained( lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx" "botp/stable-diffusion-v1-5-inpainting", subfolder="scheduler", revision="onnx"
) )
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", "botp/stable-diffusion-v1-5-inpainting",
revision="onnx", revision="onnx",
scheduler=lms_scheduler, scheduler=lms_scheduler,
safety_checker=None, safety_checker=None,
......
...@@ -1332,7 +1332,7 @@ class StableDiffusionPipelineCkptTests(unittest.TestCase): ...@@ -1332,7 +1332,7 @@ class StableDiffusionPipelineCkptTests(unittest.TestCase):
def test_download_from_hub(self): def test_download_from_hub(self):
ckpt_paths = [ ckpt_paths = [
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors", "https://huggingface.co/Jiali/stable-diffusion-1.5/blob/main/v1-5-pruned-emaonly.safetensors",
"https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors", "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors",
] ]
...@@ -1346,8 +1346,8 @@ class StableDiffusionPipelineCkptTests(unittest.TestCase): ...@@ -1346,8 +1346,8 @@ class StableDiffusionPipelineCkptTests(unittest.TestCase):
assert image_out.shape == (512, 512, 3) assert image_out.shape == (512, 512, 3)
def test_download_local(self): def test_download_local(self):
ckpt_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.safetensors") ckpt_filename = hf_hub_download("Jiali/stable-diffusion-1.5", filename="v1-5-pruned-emaonly.safetensors")
config_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-inference.yaml") config_filename = hf_hub_download("Jiali/stable-diffusion-1.5", filename="v1-inference.yaml")
pipe = StableDiffusionPipeline.from_single_file( pipe = StableDiffusionPipeline.from_single_file(
ckpt_filename, config_files={"v1": config_filename}, torch_dtype=torch.float16 ckpt_filename, config_files={"v1": config_filename}, torch_dtype=torch.float16
...@@ -1402,7 +1402,7 @@ class StableDiffusionPipelineNightlyTests(unittest.TestCase): ...@@ -1402,7 +1402,7 @@ class StableDiffusionPipelineNightlyTests(unittest.TestCase):
assert max_diff < 1e-3 assert max_diff < 1e-3
def test_stable_diffusion_1_5_pndm(self): def test_stable_diffusion_1_5_pndm(self):
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device) sd_pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5").to(torch_device)
sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device) inputs = self.get_inputs(torch_device)
...@@ -1483,9 +1483,9 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): ...@@ -1483,9 +1483,9 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
return inputs return inputs
def get_pipeline_output_without_device_map(self): def get_pipeline_output_without_device_map(self):
sd_pipe = StableDiffusionPipeline.from_pretrained( sd_pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5", torch_dtype=torch.float16).to(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 torch_device
).to(torch_device) )
sd_pipe.set_progress_bar_config(disable=True) sd_pipe.set_progress_bar_config(disable=True)
inputs = self.get_inputs() inputs = self.get_inputs()
no_device_map_image = sd_pipe(**inputs).images no_device_map_image = sd_pipe(**inputs).images
...@@ -1498,7 +1498,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): ...@@ -1498,7 +1498,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
no_device_map_image = self.get_pipeline_output_without_device_map() no_device_map_image = self.get_pipeline_output_without_device_map()
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 "Jiali/stable-diffusion-1.5", device_map="balanced", torch_dtype=torch.float16
) )
sd_pipe_with_device_map.set_progress_bar_config(disable=True) sd_pipe_with_device_map.set_progress_bar_config(disable=True)
inputs = self.get_inputs() inputs = self.get_inputs()
...@@ -1509,7 +1509,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): ...@@ -1509,7 +1509,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
def test_components_put_in_right_devices(self): def test_components_put_in_right_devices(self):
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 "Jiali/stable-diffusion-1.5", device_map="balanced", torch_dtype=torch.float16
) )
assert len(set(sd_pipe_with_device_map.hf_device_map.values())) >= 2 assert len(set(sd_pipe_with_device_map.hf_device_map.values())) >= 2
...@@ -1518,7 +1518,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): ...@@ -1518,7 +1518,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
no_device_map_image = self.get_pipeline_output_without_device_map() no_device_map_image = self.get_pipeline_output_without_device_map()
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", "Jiali/stable-diffusion-1.5",
device_map="balanced", device_map="balanced",
max_memory={0: "1GB", 1: "1GB"}, max_memory={0: "1GB", 1: "1GB"},
torch_dtype=torch.float16, torch_dtype=torch.float16,
...@@ -1532,7 +1532,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): ...@@ -1532,7 +1532,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
def test_reset_device_map(self): def test_reset_device_map(self):
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 "Jiali/stable-diffusion-1.5", device_map="balanced", torch_dtype=torch.float16
) )
sd_pipe_with_device_map.reset_device_map() sd_pipe_with_device_map.reset_device_map()
...@@ -1544,7 +1544,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): ...@@ -1544,7 +1544,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
def test_reset_device_map_to(self): def test_reset_device_map_to(self):
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 "Jiali/stable-diffusion-1.5", device_map="balanced", torch_dtype=torch.float16
) )
sd_pipe_with_device_map.reset_device_map() sd_pipe_with_device_map.reset_device_map()
...@@ -1556,7 +1556,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): ...@@ -1556,7 +1556,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
def test_reset_device_map_enable_model_cpu_offload(self): def test_reset_device_map_enable_model_cpu_offload(self):
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 "Jiali/stable-diffusion-1.5", device_map="balanced", torch_dtype=torch.float16
) )
sd_pipe_with_device_map.reset_device_map() sd_pipe_with_device_map.reset_device_map()
...@@ -1568,7 +1568,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): ...@@ -1568,7 +1568,7 @@ class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
def test_reset_device_map_enable_sequential_cpu_offload(self): def test_reset_device_map_enable_sequential_cpu_offload(self):
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 "Jiali/stable-diffusion-1.5", device_map="balanced", torch_dtype=torch.float16
) )
sd_pipe_with_device_map.reset_device_map() sd_pipe_with_device_map.reset_device_map()
......
...@@ -566,7 +566,7 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase): ...@@ -566,7 +566,7 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
assert module.device == torch.device("cpu") assert module.device == torch.device("cpu")
def test_img2img_2nd_order(self): def test_img2img_2nd_order(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
sd_pipe.scheduler = HeunDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.scheduler = HeunDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device) sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_progress_bar_config(disable=None)
...@@ -630,7 +630,7 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase): ...@@ -630,7 +630,7 @@ class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
def test_img2img_safety_checker_works(self): def test_img2img_safety_checker_works(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
sd_pipe.to(torch_device) sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_progress_bar_config(disable=None)
...@@ -686,7 +686,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase): ...@@ -686,7 +686,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
return inputs return inputs
def test_img2img_pndm(self): def test_img2img_pndm(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
sd_pipe.to(torch_device) sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_progress_bar_config(disable=None)
...@@ -701,7 +701,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase): ...@@ -701,7 +701,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
assert max_diff < 1e-3 assert max_diff < 1e-3
def test_img2img_ddim(self): def test_img2img_ddim(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device) sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_progress_bar_config(disable=None)
...@@ -717,7 +717,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase): ...@@ -717,7 +717,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
assert max_diff < 1e-3 assert max_diff < 1e-3
def test_img2img_lms(self): def test_img2img_lms(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device) sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_progress_bar_config(disable=None)
...@@ -733,7 +733,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase): ...@@ -733,7 +733,7 @@ class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
assert max_diff < 1e-3 assert max_diff < 1e-3
def test_img2img_dpm(self): def test_img2img_dpm(self):
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Jiali/stable-diffusion-1.5")
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device) sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None) sd_pipe.set_progress_bar_config(disable=None)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment