@@ -21,7 +21,7 @@ The Stable Diffusion model can also infer depth based on an image using [MiDaS](
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -21,14 +21,14 @@ The Stable Diffusion model can also be applied to inpainting which lets you edit
## Tips
It is recommended to use this pipeline with checkpoints that have been specifically fine-tuned for inpainting, such
as [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting). Default
as [stable-diffusion-v1-5/stable-diffusion-inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting). Default
text-to-image Stable Diffusion checkpoints, such as
[stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) are also compatible but they might be less performant.
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -17,7 +17,7 @@ The Stable Diffusion latent upscaler model was created by [Katherine Crowson](ht
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -22,7 +22,7 @@ Stable Diffusion is trained on 512x512 images from a subset of the LAION-5B data
For more details about how Stable Diffusion works and how it differs from the base latent diffusion model, take a look at the Stability AI [announcement](https://stability.ai/blog/stable-diffusion-announcement) and our own [blog post](https://huggingface.co/blog/stable_diffusion#how-does-stable-diffusion-work) for more technical details.
You can find the original codebase for Stable Diffusion v1.0 at [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion) and Stable Diffusion v2.0 at [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion) as well as their original scripts for various tasks. Additional official checkpoints for the different Stable Diffusion versions and tasks can be found on the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations. Explore these organizations to find the best checkpoint for your use-case!
You can find the original codebase for Stable Diffusion v1.0 at [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion) and Stable Diffusion v2.0 at [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion) as well as their original scripts for various tasks. Additional official checkpoints for the different Stable Diffusion versions and tasks can be found on the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations. Explore these organizations to find the best checkpoint for your use-case!
The table below summarizes the available Stable Diffusion pipelines, their supported tasks, and an interactive demo:
...
...
@@ -64,7 +64,7 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
@@ -36,7 +36,7 @@ Here are some examples for how to use Stable Diffusion 2 for each task:
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -21,7 +21,7 @@ The Stable Diffusion upscaler diffusion model was created by the researchers and
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
Inpainting requires 9 channels in the input sample. You can check this value in a pretrained inpainting model like [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting):
Inpainting requires 9 channels in the input sample. You can check this value in a pretrained inpainting model like [`stable-diffusion-v1-5/stable-diffusion-inpainting`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting):
[Stable Diffusion Inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting), [Stable Diffusion XL (SDXL) Inpainting](https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1), and [Kandinsky 2.2 Inpainting](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder-inpaint) are among the most popular models for inpainting. SDXL typically produces higher resolution images than Stable Diffusion v1.5, and Kandinsky 2.2 is also capable of generating high-quality images.
[Stable Diffusion Inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting), [Stable Diffusion XL (SDXL) Inpainting](https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1), and [Kandinsky 2.2 Inpainting](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder-inpaint) are among the most popular models for inpainting. SDXL typically produces higher resolution images than Stable Diffusion v1.5, and Kandinsky 2.2 is also capable of generating high-quality images.
### Stable Diffusion Inpainting
...
...
@@ -124,7 +124,7 @@ from diffusers import AutoPipelineForInpainting
인페인팅은 입력 샘플에 9개의 채널이 필요합니다. [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting)와 같은 사전학습된 인페인팅 모델에서 이 값을 확인할 수 있습니다:
인페인팅은 입력 샘플에 9개의 채널이 필요합니다. [`stable-diffusion-v1-5/stable-diffusion-inpainting`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)와 같은 사전학습된 인페인팅 모델에서 이 값을 확인할 수 있습니다:
@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
[[open-in-colab]]
[`StableDiffusionInpaintPipeline`]은 마스크와 텍스트 프롬프트를 제공하여 이미지의 특정 부분을 편집할 수 있도록 합니다. 이 기능은 인페인팅 작업을 위해 특별히 훈련된 [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting)과 같은 Stable Diffusion 버전을 사용합니다.
[`StableDiffusionInpaintPipeline`]은 마스크와 텍스트 프롬프트를 제공하여 이미지의 특정 부분을 편집할 수 있도록 합니다. 이 기능은 인페인팅 작업을 위해 특별히 훈련된 [`stable-diffusion-v1-5/stable-diffusion-inpainting`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)과 같은 Stable Diffusion 버전을 사용합니다.
먼저 [`StableDiffusionInpaintPipeline`] 인스턴스를 불러옵니다: